terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of ultraviolet B radiation on pathogenic molds of grapes

Effect of ultraviolet B radiation on pathogenic molds of grapes

Abstract

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1]

As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

The molds studied were seeded on Czapek agar plates (in triplicate) that were irradiated with UV-B radiation lamps located at a height of 25 cm, obtaining an irradiance of 16 Wm-2. Different exposure times (0, 1, 3, 6, 12 and 24 hours) were applied on two series of plates. One of the series was protected from radiation by UV radiation filters and acted as a control. After exposure, the plates were incubated at 20ºC in the darkness, assessing the degree of mold development over two weeks.

UV-B radiation caused a clear inhibitory effect on the development of the molds studied that was proportional to the irradiation dose received. The observed effect was different for each mold, being Rhizopus stolonipher and Botrytis cinerea the most sensitive to UV-B radiation. The resistance of molds to UV-B radiation has been related by different authors with mold pigmentation[2].

These results allow us to contemplate the use of UV-B radiation in the control of pathogenic molds of grapes.

References:

1)  Usall J. et al. (2016) Physical treatments to control postharvest diseases of fresh fruits and vegetables. Post. Biol. Tech., 122: 30-40, DOI 10.1016/j.postharvbio.2016.05.002

2)  García-Cela, M.E. et al. (2016) Conidia survival of Aspergillus section Nigri, Flavi and Circumdati under UV-A and UV-B radiation with cycling temperature/light regime. J. Sci. Food Agric., 96:2249-2256, DOI 10.1002/jsfa.734

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Hidalgo-Sanz R., Del-Castillo-Alonso M.A., Sanz S., Olarte C., Martínez-Abaigar J., Núñez-Olivera E.

Faculty of Science and Technology, University of La Rioja. 26006 Logroño (La Rioja), Spain

Contact the author*

Keywords

UVR-B, pathogens molds, grapes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Grape skin has a barrier and protective function in grapes. Cell wall of grape skins is mainly composed of polysaccharides such as pectins, celulloses and hemicelluloses and structural proteins. Terroir, variety and changes during ripening can affect the content of polysaccharides in grapes. The aim of this study was to evaluate the content of polysaccharides (PS) in grapes along the ripening process. Three red grape varieties were studied: Garnacha (G), Tempranillo (T) and Prieto Picudo (PP).

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.