terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of ultraviolet B radiation on pathogenic molds of grapes

Effect of ultraviolet B radiation on pathogenic molds of grapes

Abstract

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1]

As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

The molds studied were seeded on Czapek agar plates (in triplicate) that were irradiated with UV-B radiation lamps located at a height of 25 cm, obtaining an irradiance of 16 Wm-2. Different exposure times (0, 1, 3, 6, 12 and 24 hours) were applied on two series of plates. One of the series was protected from radiation by UV radiation filters and acted as a control. After exposure, the plates were incubated at 20ºC in the darkness, assessing the degree of mold development over two weeks.

UV-B radiation caused a clear inhibitory effect on the development of the molds studied that was proportional to the irradiation dose received. The observed effect was different for each mold, being Rhizopus stolonipher and Botrytis cinerea the most sensitive to UV-B radiation. The resistance of molds to UV-B radiation has been related by different authors with mold pigmentation[2].

These results allow us to contemplate the use of UV-B radiation in the control of pathogenic molds of grapes.

References:

1)  Usall J. et al. (2016) Physical treatments to control postharvest diseases of fresh fruits and vegetables. Post. Biol. Tech., 122: 30-40, DOI 10.1016/j.postharvbio.2016.05.002

2)  García-Cela, M.E. et al. (2016) Conidia survival of Aspergillus section Nigri, Flavi and Circumdati under UV-A and UV-B radiation with cycling temperature/light regime. J. Sci. Food Agric., 96:2249-2256, DOI 10.1002/jsfa.734

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Hidalgo-Sanz R., Del-Castillo-Alonso M.A., Sanz S., Olarte C., Martínez-Abaigar J., Núñez-Olivera E.

Faculty of Science and Technology, University of La Rioja. 26006 Logroño (La Rioja), Spain

Contact the author*

Keywords

UVR-B, pathogens molds, grapes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.