terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of ultraviolet B radiation on pathogenic molds of grapes

Effect of ultraviolet B radiation on pathogenic molds of grapes

Abstract

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1]

As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

The molds studied were seeded on Czapek agar plates (in triplicate) that were irradiated with UV-B radiation lamps located at a height of 25 cm, obtaining an irradiance of 16 Wm-2. Different exposure times (0, 1, 3, 6, 12 and 24 hours) were applied on two series of plates. One of the series was protected from radiation by UV radiation filters and acted as a control. After exposure, the plates were incubated at 20ºC in the darkness, assessing the degree of mold development over two weeks.

UV-B radiation caused a clear inhibitory effect on the development of the molds studied that was proportional to the irradiation dose received. The observed effect was different for each mold, being Rhizopus stolonipher and Botrytis cinerea the most sensitive to UV-B radiation. The resistance of molds to UV-B radiation has been related by different authors with mold pigmentation[2].

These results allow us to contemplate the use of UV-B radiation in the control of pathogenic molds of grapes.

References:

1)  Usall J. et al. (2016) Physical treatments to control postharvest diseases of fresh fruits and vegetables. Post. Biol. Tech., 122: 30-40, DOI 10.1016/j.postharvbio.2016.05.002

2)  García-Cela, M.E. et al. (2016) Conidia survival of Aspergillus section Nigri, Flavi and Circumdati under UV-A and UV-B radiation with cycling temperature/light regime. J. Sci. Food Agric., 96:2249-2256, DOI 10.1002/jsfa.734

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Hidalgo-Sanz R., Del-Castillo-Alonso M.A., Sanz S., Olarte C., Martínez-Abaigar J., Núñez-Olivera E.

Faculty of Science and Technology, University of La Rioja. 26006 Logroño (La Rioja), Spain

Contact the author*

Keywords

UVR-B, pathogens molds, grapes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability.

Characterization of non-cultivated wild grapevines in Extremadura (Spain) 

Several Eurasian wild grapevine populations were found along Extremadura region (southwestern Spain). For conservation and study, one individual from four different populations (named L1, L2, L5 and L6) was vegetatively propagated and planted at Instituto de Investigaciones Agrarias Finca La Orden (CICYTEX), Badajoz. The aim of the present work was to characterize those conserved individuals from four different populations based on both an ampelographic description and a molecular analysis. Three vines per individual were studied.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.