terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Abstract

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification. Several genes controlling stomatal development have been characterized in Arabidopsis. Using translational genomics, we identified in the grapevine reference genome single orthologues of the master stomatal development regulators SPCH, MUTEand FAMA. We complemented Arabidopsis loss-of-function mutants with the grapevine candidate proteins, whose conditional overexpression also produced the expected epidermal phenotypes. The corresponding grapevine gene promoters are also under study. Additionally, we scored SA in 13 grapevine varieties over four consecutive growing seasons, and disclosed substantial SA differences with a strong genetic basis. These varieties were also examined for water use efficiency and physiological performance under drought and irrigation, finding significant varietal differences. Correlating developmental and physiological traits will contribute useful tools for grapevine management and breeding.   

Acknowledgements: This work was supported by the PID2019-105362RB-100, SBPLY/21/180501/000144, UCLM intramural grants and EU FEDER funds. PhD grants from JCCM supported AO and JIM.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Mena-Morales A.1*, Martín-Forero A.F.2, Ortega A.2, Saiz-Pérez J.2, Martínez-Gascueña J.1, Chacón-Vozmediano J.L.1, Illescas-Miranda J.2, Fenoll C.2, Mena M. 2

1Regional Institute of Agri-Food and Forestry Research and Development of Castilla-La Mancha (IRIAF), IVICAM, Ctra. Toledo-Albacete s/n, 13700 Tomelloso (Ciudad Real), Spain
2 Faculty of Environmental and Biochemistry Sciences, University of Castilla-La Mancha, Avda. Carlos III, s/n, Technological Campus of the Arms Factory, 45071 Toledo, Spain

Contact the author*

Keywords

stomatal abundance, stomatal genes, genotypic variation, water use efficiency

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

The weak role of organic mulches in shaping bacterial communities in grapevine

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown.

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.