terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Abstract

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

In this research, the new hybrids “T4”, “T11”, “T75”, “T81” and “T82” were compared to cv. Monastrell in 2021 and 2022 seasons. These genotypes were selected for their markedly low sugar content and high phenolic concentration. Therefore their wines were characterized by its high quality and a lower alcohol content.

Results indicated that the wines from the five new hybrids doubled (or tripled) the values ​​of IPT, anthocyanins and tannins of Monastrell wines. In addition, the results obtained show that these wines will have greater stability over time, thus extending their life extent, due to their high antioxidant capacities.

These preliminary (but promising) results indicate that these novel hybrids have some potential to solve the decoupling between phenolic and technological maturity. These novel hybrids could also generate low-alcohol but high-quality wines, as a solution to current consumer demands.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Moreno-Olivares, J.D1*, Giménez-Bañón M.J1, Paladines-Quezada D.F2, Cebrían-Pérez A1, Gómez-Martínez J.C1, Bleda-Sánchez J.A1, Ruiz-García L1 and Gil-Muñoz R1

1 EVE-IMIDA (Viticulture and Oenology Team). Murcian Institute for Agrarian and Environmental Research and Development. La Alberca 30150, Murcia-Spain
2 Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja). Carretera de Burgos, Km.6. 26007 Logroño, Spain

Contact the author*

Keywords

grapes, wines, polyphenolic compounds, alcohol, crosses, Monastrell

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Grape skin has a barrier and protective function in grapes. Cell wall of grape skins is mainly composed of polysaccharides such as pectins, celulloses and hemicelluloses and structural proteins. Terroir, variety and changes during ripening can affect the content of polysaccharides in grapes. The aim of this study was to evaluate the content of polysaccharides (PS) in grapes along the ripening process. Three red grape varieties were studied: Garnacha (G), Tempranillo (T) and Prieto Picudo (PP).

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.