terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Abstract

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

In this research, the new hybrids “T4”, “T11”, “T75”, “T81” and “T82” were compared to cv. Monastrell in 2021 and 2022 seasons. These genotypes were selected for their markedly low sugar content and high phenolic concentration. Therefore their wines were characterized by its high quality and a lower alcohol content.

Results indicated that the wines from the five new hybrids doubled (or tripled) the values ​​of IPT, anthocyanins and tannins of Monastrell wines. In addition, the results obtained show that these wines will have greater stability over time, thus extending their life extent, due to their high antioxidant capacities.

These preliminary (but promising) results indicate that these novel hybrids have some potential to solve the decoupling between phenolic and technological maturity. These novel hybrids could also generate low-alcohol but high-quality wines, as a solution to current consumer demands.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Moreno-Olivares, J.D1*, Giménez-Bañón M.J1, Paladines-Quezada D.F2, Cebrían-Pérez A1, Gómez-Martínez J.C1, Bleda-Sánchez J.A1, Ruiz-García L1 and Gil-Muñoz R1

1 EVE-IMIDA (Viticulture and Oenology Team). Murcian Institute for Agrarian and Environmental Research and Development. La Alberca 30150, Murcia-Spain
2 Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja). Carretera de Burgos, Km.6. 26007 Logroño, Spain

Contact the author*

Keywords

grapes, wines, polyphenolic compounds, alcohol, crosses, Monastrell

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Contamination problems arising from the use of pesticides in viticulture have raised concerns. One of the alternatives to reduce contamination is the use of elicitors, molecules capable of stimulating the natural defences of plants, promoting the production of phenolic compounds (PC) that offer protection against biotic and abiotic stress. Previous studies on Cabernet-Sauvignon seedlings demonstrated that foliar application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH) increased proteins and PC involved in grapevine defence mechanisms. However, no trials had been conducted on Monastrell seedlings, a major winegrape variety in Spain.

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet.

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.