terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Abstract

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

In this research, the new hybrids “T4”, “T11”, “T75”, “T81” and “T82” were compared to cv. Monastrell in 2021 and 2022 seasons. These genotypes were selected for their markedly low sugar content and high phenolic concentration. Therefore their wines were characterized by its high quality and a lower alcohol content.

Results indicated that the wines from the five new hybrids doubled (or tripled) the values ​​of IPT, anthocyanins and tannins of Monastrell wines. In addition, the results obtained show that these wines will have greater stability over time, thus extending their life extent, due to their high antioxidant capacities.

These preliminary (but promising) results indicate that these novel hybrids have some potential to solve the decoupling between phenolic and technological maturity. These novel hybrids could also generate low-alcohol but high-quality wines, as a solution to current consumer demands.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Moreno-Olivares, J.D1*, Giménez-Bañón M.J1, Paladines-Quezada D.F2, Cebrían-Pérez A1, Gómez-Martínez J.C1, Bleda-Sánchez J.A1, Ruiz-García L1 and Gil-Muñoz R1

1 EVE-IMIDA (Viticulture and Oenology Team). Murcian Institute for Agrarian and Environmental Research and Development. La Alberca 30150, Murcia-Spain
2 Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja). Carretera de Burgos, Km.6. 26007 Logroño, Spain

Contact the author*

Keywords

grapes, wines, polyphenolic compounds, alcohol, crosses, Monastrell

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Qualitative and productive characterization of a minority variety: ‘Branco lexítimo’ in DO Ribeira Sacra (Spain)

The actual climate changes, together with the strong regulation of the European Union and Spanish government, in search of sustainable viticulture, have forced the recovery of minority varieties, expanding the range of grape varieties, as well as the possible development of wines with unique profiles. In the Ribeira Sacra DO (Spain), a comparative study of the agronomic and qualitative behavior of the ‘Branco lexítimo’ variety has been carried out, compared to the majority white variety in the DO: ‘Godello’, located in the same study plot, with identic soil and climatic conditions. The study contemplated the analysis of phenology and leaf water potential, as well as the productive results and the analysis of the must quality, during four seasons: 2018 – 2021.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.