terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Abstract

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca. 500 grapevines including both wild Vitis species originated in three geographical regions (North America, Asia and Europe), and commercial varieties of V. vinifera ssp. sativa (using Illumina paired-end sequencing 20x from the 4k project[1]). We comparatively estimated the overall efficacy of selection as the ratio of non-synonymous to synonymous mutations in protein coding regions. We also performed various functional prediction analyses on the genomic sequence data to identify deleterious alleles and their effect on gene expression to quantify genetic load. In addition, 40 of the sequenced grapevine varieties were evaluated in an experimental common garden in Bordeaux (VitAdapt[2]). We obtained phenotypic traits related to wine productivity and resilience (e.g., phenology, biomass growth, water use efficiency and grape production) which allowed to analyse the correlation between the estimated genetic load and phenotypes. The results obtained from this work will contribute to the understanding of how we can best account for deleterious alleles and genetic load in new-generation grapevine breeding.

Acknowledgements: This study received financial support from the French government in the framework of the IdEX Bordeaux University “Investments for the Future” program / GPR Bordeaux Plant Sciences, and from the University of Bordeaux (PurVitis project).

1)  Dong, Y.,et al. (2023). Dual domestications and origin of traits in grapevine evolution. Science, 379(6635), 892901.

2)  Destrac Irvine A. and van Leeuwen C. (2016) The VitAdapt project: extensive phenotyping of a wide range of varieties in order to optimize the use of genetic diversity within the Vitis vinifera species as a tool for adaptation to a changing environment. Climwine, sustainable grape and wine production in the context of climate change, 11-13 April 2016, Bordeaux. Full text proceedings paper, 165-171.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Enrique Sáez-Laguna 1*, Gaëtan Craye 1Agnes Destrac Irvine 2, Cornelis van Leeuwen 2, Nabil Girollet 2, Pierre-François Bert 2, Nathalie Ollat 2, Santiago González-Martínez 1, Marina de Miguel 2

1 BIOGECO, Univ. Bordeaux, INRAE, 33610 Cestas, France
2 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France

Contact the author*

Keywords

deleterious mutations, genetic load, fitness, grape, variety, production

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Inert gases persistence in wine storage tank blanketing

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours.

Prediction of aromatic attributes of red wines from its colour properties 

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation.

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.

Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Grape skin has a barrier and protective function in grapes. Cell wall of grape skins is mainly composed of polysaccharides such as pectins, celulloses and hemicelluloses and structural proteins. Terroir, variety and changes during ripening can affect the content of polysaccharides in grapes. The aim of this study was to evaluate the content of polysaccharides (PS) in grapes along the ripening process. Three red grape varieties were studied: Garnacha (G), Tempranillo (T) and Prieto Picudo (PP).

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.