terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Abstract

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca. 500 grapevines including both wild Vitis species originated in three geographical regions (North America, Asia and Europe), and commercial varieties of V. vinifera ssp. sativa (using Illumina paired-end sequencing 20x from the 4k project[1]). We comparatively estimated the overall efficacy of selection as the ratio of non-synonymous to synonymous mutations in protein coding regions. We also performed various functional prediction analyses on the genomic sequence data to identify deleterious alleles and their effect on gene expression to quantify genetic load. In addition, 40 of the sequenced grapevine varieties were evaluated in an experimental common garden in Bordeaux (VitAdapt[2]). We obtained phenotypic traits related to wine productivity and resilience (e.g., phenology, biomass growth, water use efficiency and grape production) which allowed to analyse the correlation between the estimated genetic load and phenotypes. The results obtained from this work will contribute to the understanding of how we can best account for deleterious alleles and genetic load in new-generation grapevine breeding.

Acknowledgements: This study received financial support from the French government in the framework of the IdEX Bordeaux University “Investments for the Future” program / GPR Bordeaux Plant Sciences, and from the University of Bordeaux (PurVitis project).

1)  Dong, Y.,et al. (2023). Dual domestications and origin of traits in grapevine evolution. Science, 379(6635), 892901.

2)  Destrac Irvine A. and van Leeuwen C. (2016) The VitAdapt project: extensive phenotyping of a wide range of varieties in order to optimize the use of genetic diversity within the Vitis vinifera species as a tool for adaptation to a changing environment. Climwine, sustainable grape and wine production in the context of climate change, 11-13 April 2016, Bordeaux. Full text proceedings paper, 165-171.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Enrique Sáez-Laguna 1*, Gaëtan Craye 1Agnes Destrac Irvine 2, Cornelis van Leeuwen 2, Nabil Girollet 2, Pierre-François Bert 2, Nathalie Ollat 2, Santiago González-Martínez 1, Marina de Miguel 2

1 BIOGECO, Univ. Bordeaux, INRAE, 33610 Cestas, France
2 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France

Contact the author*

Keywords

deleterious mutations, genetic load, fitness, grape, variety, production

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

Croatian viticulture is mainly based on native grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries to develop resistant varieties possessing high-quality levels. Native cultivars from Croatia are not included in the breeding programs of other countries.

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.

Investigating the Ancient Egyptian wines: The wine jars database

In Ancient Egypt, wine was a luxury product consumed mainly by the upper classes and the royal family and offered to gods in daily religious rituals in the temples.
Since the Predynastic (4000-3100 BC) period, wine jars were placed in tombs as funerary offerings. From the Old Kingdom (2680-2160 BC) to the Greco-Roman (332 BC-395 AD) period, viticulture and winemaking scenes were depicted on the private tombs’ walls. During the New Kingdom (1539-1075 BC), wine jars were inscribed to indicate: vintage year, product, quality, provenance, property and winemaker’s name and title.

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.