terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Abstract

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca. 500 grapevines including both wild Vitis species originated in three geographical regions (North America, Asia and Europe), and commercial varieties of V. vinifera ssp. sativa (using Illumina paired-end sequencing 20x from the 4k project[1]). We comparatively estimated the overall efficacy of selection as the ratio of non-synonymous to synonymous mutations in protein coding regions. We also performed various functional prediction analyses on the genomic sequence data to identify deleterious alleles and their effect on gene expression to quantify genetic load. In addition, 40 of the sequenced grapevine varieties were evaluated in an experimental common garden in Bordeaux (VitAdapt[2]). We obtained phenotypic traits related to wine productivity and resilience (e.g., phenology, biomass growth, water use efficiency and grape production) which allowed to analyse the correlation between the estimated genetic load and phenotypes. The results obtained from this work will contribute to the understanding of how we can best account for deleterious alleles and genetic load in new-generation grapevine breeding.

Acknowledgements: This study received financial support from the French government in the framework of the IdEX Bordeaux University “Investments for the Future” program / GPR Bordeaux Plant Sciences, and from the University of Bordeaux (PurVitis project).

1)  Dong, Y.,et al. (2023). Dual domestications and origin of traits in grapevine evolution. Science, 379(6635), 892901.

2)  Destrac Irvine A. and van Leeuwen C. (2016) The VitAdapt project: extensive phenotyping of a wide range of varieties in order to optimize the use of genetic diversity within the Vitis vinifera species as a tool for adaptation to a changing environment. Climwine, sustainable grape and wine production in the context of climate change, 11-13 April 2016, Bordeaux. Full text proceedings paper, 165-171.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Enrique Sáez-Laguna 1*, Gaëtan Craye 1Agnes Destrac Irvine 2, Cornelis van Leeuwen 2, Nabil Girollet 2, Pierre-François Bert 2, Nathalie Ollat 2, Santiago González-Martínez 1, Marina de Miguel 2

1 BIOGECO, Univ. Bordeaux, INRAE, 33610 Cestas, France
2 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France

Contact the author*

Keywords

deleterious mutations, genetic load, fitness, grape, variety, production

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Granxa D’Outeiro is a recovered ancient vineyard located in the heart of DOP Ribeiro, where traditional white grapevine varieties are growing under sustainable management. Spontaneous fermentations using grape must from Treixadura, Albariño, Lado, Godello, and Loureira varieties were carried out at experimental winery of Evega. Yeasts were isolated from must and at different stages of fermentation. Those colonies belonging to Saccharomyces cerevisiae were characterized at strain level by mDNA-RFLPs.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.