terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Foliar application of urea improved the nitrogen composition of Chenin grapes

Foliar application of urea improved the nitrogen composition of Chenin grapes

Abstract

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant. In addition, the experimental design was a randomized block design with three. Also, each treatment was repeated one week later. The grapes were harvest at optimum maturity (20º Brix), harvested by hand and transported in separate boxes for each treatment and control. Subsequently, grapes samples were analysed to determine the oenological parameters (official methods), and the nitrogen composition, ammonium and amino nitrogen (OenoFoss™ autoanalyzer). In addition, the yeast assimilable nitrogen (YAN) content was calculated as the sum of ammonium and amino nitrogen. Finally, the results were studied statistically by analysis of variance (ANOVA) and differences between samples were compared by Duncan’s test (p-value ≤ 0,05). In 2023 vintage, C1 and C3 treatments improved the amino nitrogen content. In addition, ammonium nitrogen content was increased by C2 and C3 treatments. And YAN content was increased by all urea treatments and C3 treatment was the one that most increased the YAN concentration in must samples. Consequently, foliar applications of urea, applied at veraison, could be an agronomic practice to improve the nitrogen concentration in Chenin grapes.

Acknowledgements: Many thanks to the collaboration with researchers from Estación Experimental Mendoza. R. M.-P. thanks National Institute for Agricultural and Food Research and Technology (INIA) and Government of La Rioja for the predoctoral contract.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Rebeca Murillo-Peña 1*, Teresa Garde-Cerdán 1, Mariela Assof 2,3, Santiago Sari 3, José María Martínez-Vidaurre 1, Martín Fanzone 2,3

1Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja) Ctra. de Burgos, Km. 6. CP 26007 Logroño, La Rioja, España
2Universidad Juan Agustín Maza. Centro de Estudios Vitícolas y Agroindustriales. Lateral Sur del Acceso Este 2245.CP 5519 Guaymallén, Mendoza, Argentina
3Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Mendoza. San Martín 3853. CP 5507EVY, Luján de Cuyo, Mendoza, Argentina

Contact the author*

Keywords

yeast assimilable nitrogen, veraison, Vitis vinifera L

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).