terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Abstract

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Laccases from lactic acid bacteria (LAB) belong to the group of multicopper oxidase enzymes with degrading activity of both phenolic and non-phenolic compounds using sometimes mediator substrates through complex reactions.

This work aimed to evaluate the BA and OTA degrading capacity of three heterologous LAB laccases from P. parvulus, L. paracasei and L. lactis, expressed in E. coli. The experimental assays were first developed in acetate buffer 50 mM with 0.1 mM CuSO4, added with complete polyphenolic compound (PFC) extracts from red (ERW) and white wines (EWW), and then in real wines from Tempranillo (RW) and Albariño varieties (WW). BA and OTA degradation was followed and quantified by analyzing samples with HPLC and HPLC-QToF-MS, respectively. Preliminary results are shown in Table 1, which seem to be promising for further analysis and applications.

Table 1. Degradation of BA and OTA by bacterial laccases.

Experiment matrix

Degradation percentage (%) of toxic compounds by the three LAB laccases

Histamine

Tyramine

Putrescine

OTA

Ppar

Lpar

Llac

Ppar

Lpar

Llac

Ppar

Lpar

Llac

Ppar

Lpar

Llac

PFC extract

ERW

9.2±2.7

3.3±4.6

0

20.3±0.6

31.5±3.4

0

31.2±4.5

20.5±6.2

0

40.4±1.4

34.9±0.7

45.0±0.8

EWW

7.3±3.7

0

0

12.9±5.4

0

0

23.1±5.6

1.2±1.7

0

4.4±1.8

10.3±0.8

14.7±0.8

Real wine

RW

1.0±1.4

22.9±3.8

0

3.8±5.3

33.1±3.3

0

0

2.1±2.9

1.1±1.5

*

*

*

WW

0

0

0

5.1±7.2

15.5±0.4

6.7±9.4

0

4.3±6.0

5.3±7.5

*

*

*

Acknowledgements: AGL2015-71227-R, RTI2018-095658-B-C31 and MSCA-IF GA 101022293.

References:

1)  Loi M. et al. (2018) In vitro single and combined mycotoxins degradation by Ery4 laccase from Pleurotus eryngii and redox mediators. Food Control, 90: 401-406.
2)  Callejón S. et al. (2016) Cloning and characterization of a new laccase from Lactobacillus plantarum J16 CECT 8944 catalyzing biogenic amines. Appl. Microbiol. Biotechnol., 100: 3113-3124.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Isaac Monroy1,2*, Isidoro Olmeda1, José Pérez-Navarro3, Sergio Gómez-Alonso3, Sergi Ferrer1,2, Isabel Pardo1,2

1ENOLAB, BIOTECMED institute
2Department of Microbiology and Ecology, University of Valencia
3Regional Institute of Applied Scientific Research, University of Castilla-La Mancha

Contact the author*

Keywords

wine toxins, biogenic amines, mycotoxins, bacterial laccases

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening.

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.