terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Abstract

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Laccases from lactic acid bacteria (LAB) belong to the group of multicopper oxidase enzymes with degrading activity of both phenolic and non-phenolic compounds using sometimes mediator substrates through complex reactions.

This work aimed to evaluate the BA and OTA degrading capacity of three heterologous LAB laccases from P. parvulus, L. paracasei and L. lactis, expressed in E. coli. The experimental assays were first developed in acetate buffer 50 mM with 0.1 mM CuSO4, added with complete polyphenolic compound (PFC) extracts from red (ERW) and white wines (EWW), and then in real wines from Tempranillo (RW) and Albariño varieties (WW). BA and OTA degradation was followed and quantified by analyzing samples with HPLC and HPLC-QToF-MS, respectively. Preliminary results are shown in Table 1, which seem to be promising for further analysis and applications.

Table 1. Degradation of BA and OTA by bacterial laccases.

Experiment matrix

Degradation percentage (%) of toxic compounds by the three LAB laccases

Histamine

Tyramine

Putrescine

OTA

Ppar

Lpar

Llac

Ppar

Lpar

Llac

Ppar

Lpar

Llac

Ppar

Lpar

Llac

PFC extract

ERW

9.2±2.7

3.3±4.6

0

20.3±0.6

31.5±3.4

0

31.2±4.5

20.5±6.2

0

40.4±1.4

34.9±0.7

45.0±0.8

EWW

7.3±3.7

0

0

12.9±5.4

0

0

23.1±5.6

1.2±1.7

0

4.4±1.8

10.3±0.8

14.7±0.8

Real wine

RW

1.0±1.4

22.9±3.8

0

3.8±5.3

33.1±3.3

0

0

2.1±2.9

1.1±1.5

*

*

*

WW

0

0

0

5.1±7.2

15.5±0.4

6.7±9.4

0

4.3±6.0

5.3±7.5

*

*

*

Acknowledgements: AGL2015-71227-R, RTI2018-095658-B-C31 and MSCA-IF GA 101022293.

References:

1)  Loi M. et al. (2018) In vitro single and combined mycotoxins degradation by Ery4 laccase from Pleurotus eryngii and redox mediators. Food Control, 90: 401-406.
2)  Callejón S. et al. (2016) Cloning and characterization of a new laccase from Lactobacillus plantarum J16 CECT 8944 catalyzing biogenic amines. Appl. Microbiol. Biotechnol., 100: 3113-3124.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Isaac Monroy1,2*, Isidoro Olmeda1, José Pérez-Navarro3, Sergio Gómez-Alonso3, Sergi Ferrer1,2, Isabel Pardo1,2

1ENOLAB, BIOTECMED institute
2Department of Microbiology and Ecology, University of Valencia
3Regional Institute of Applied Scientific Research, University of Castilla-La Mancha

Contact the author*

Keywords

wine toxins, biogenic amines, mycotoxins, bacterial laccases

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Genetic study of wild grapevines in La Rioja region

Since the mid-1980s, several surveys have been carried out in La Rioja to search for populations of the sylvestris grapevine subspecies (Vitis vinifera L. subsp. sylvestris Gmelin). The banks of the Ebro River and its tributaries (Alhama, Cidacos, Leza, Iregua, Najerilla, Oja and Tirón rivers), as well as the surrounding vegetation of their valleys have been covered. So far, all the populations found are alluvial, forming part of the riparian vegetation of the Najerilla (the first reported population in La Rioja [1]), Iregua, and the vicinity of Oja valleys.

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.