terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Abstract

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Laccases from lactic acid bacteria (LAB) belong to the group of multicopper oxidase enzymes with degrading activity of both phenolic and non-phenolic compounds using sometimes mediator substrates through complex reactions.

This work aimed to evaluate the BA and OTA degrading capacity of three heterologous LAB laccases from P. parvulus, L. paracasei and L. lactis, expressed in E. coli. The experimental assays were first developed in acetate buffer 50 mM with 0.1 mM CuSO4, added with complete polyphenolic compound (PFC) extracts from red (ERW) and white wines (EWW), and then in real wines from Tempranillo (RW) and Albariño varieties (WW). BA and OTA degradation was followed and quantified by analyzing samples with HPLC and HPLC-QToF-MS, respectively. Preliminary results are shown in Table 1, which seem to be promising for further analysis and applications.

Table 1. Degradation of BA and OTA by bacterial laccases.

Experiment matrix

Degradation percentage (%) of toxic compounds by the three LAB laccases

Histamine

Tyramine

Putrescine

OTA

Ppar

Lpar

Llac

Ppar

Lpar

Llac

Ppar

Lpar

Llac

Ppar

Lpar

Llac

PFC extract

ERW

9.2±2.7

3.3±4.6

0

20.3±0.6

31.5±3.4

0

31.2±4.5

20.5±6.2

0

40.4±1.4

34.9±0.7

45.0±0.8

EWW

7.3±3.7

0

0

12.9±5.4

0

0

23.1±5.6

1.2±1.7

0

4.4±1.8

10.3±0.8

14.7±0.8

Real wine

RW

1.0±1.4

22.9±3.8

0

3.8±5.3

33.1±3.3

0

0

2.1±2.9

1.1±1.5

*

*

*

WW

0

0

0

5.1±7.2

15.5±0.4

6.7±9.4

0

4.3±6.0

5.3±7.5

*

*

*

Acknowledgements: AGL2015-71227-R, RTI2018-095658-B-C31 and MSCA-IF GA 101022293.

References:

1)  Loi M. et al. (2018) In vitro single and combined mycotoxins degradation by Ery4 laccase from Pleurotus eryngii and redox mediators. Food Control, 90: 401-406.
2)  Callejón S. et al. (2016) Cloning and characterization of a new laccase from Lactobacillus plantarum J16 CECT 8944 catalyzing biogenic amines. Appl. Microbiol. Biotechnol., 100: 3113-3124.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Isaac Monroy1,2*, Isidoro Olmeda1, José Pérez-Navarro3, Sergio Gómez-Alonso3, Sergi Ferrer1,2, Isabel Pardo1,2

1ENOLAB, BIOTECMED institute
2Department of Microbiology and Ecology, University of Valencia
3Regional Institute of Applied Scientific Research, University of Castilla-La Mancha

Contact the author*

Keywords

wine toxins, biogenic amines, mycotoxins, bacterial laccases

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.
We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin.

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.