terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Abstract

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Laccases from lactic acid bacteria (LAB) belong to the group of multicopper oxidase enzymes with degrading activity of both phenolic and non-phenolic compounds using sometimes mediator substrates through complex reactions.

This work aimed to evaluate the BA and OTA degrading capacity of three heterologous LAB laccases from P. parvulus, L. paracasei and L. lactis, expressed in E. coli. The experimental assays were first developed in acetate buffer 50 mM with 0.1 mM CuSO4, added with complete polyphenolic compound (PFC) extracts from red (ERW) and white wines (EWW), and then in real wines from Tempranillo (RW) and Albariño varieties (WW). BA and OTA degradation was followed and quantified by analyzing samples with HPLC and HPLC-QToF-MS, respectively. Preliminary results are shown in Table 1, which seem to be promising for further analysis and applications.

Table 1. Degradation of BA and OTA by bacterial laccases.

Experiment matrix

Degradation percentage (%) of toxic compounds by the three LAB laccases

Histamine

Tyramine

Putrescine

OTA

Ppar

Lpar

Llac

Ppar

Lpar

Llac

Ppar

Lpar

Llac

Ppar

Lpar

Llac

PFC extract

ERW

9.2±2.7

3.3±4.6

0

20.3±0.6

31.5±3.4

0

31.2±4.5

20.5±6.2

0

40.4±1.4

34.9±0.7

45.0±0.8

EWW

7.3±3.7

0

0

12.9±5.4

0

0

23.1±5.6

1.2±1.7

0

4.4±1.8

10.3±0.8

14.7±0.8

Real wine

RW

1.0±1.4

22.9±3.8

0

3.8±5.3

33.1±3.3

0

0

2.1±2.9

1.1±1.5

*

*

*

WW

0

0

0

5.1±7.2

15.5±0.4

6.7±9.4

0

4.3±6.0

5.3±7.5

*

*

*

Acknowledgements: AGL2015-71227-R, RTI2018-095658-B-C31 and MSCA-IF GA 101022293.

References:

1)  Loi M. et al. (2018) In vitro single and combined mycotoxins degradation by Ery4 laccase from Pleurotus eryngii and redox mediators. Food Control, 90: 401-406.
2)  Callejón S. et al. (2016) Cloning and characterization of a new laccase from Lactobacillus plantarum J16 CECT 8944 catalyzing biogenic amines. Appl. Microbiol. Biotechnol., 100: 3113-3124.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Isaac Monroy1,2*, Isidoro Olmeda1, José Pérez-Navarro3, Sergio Gómez-Alonso3, Sergi Ferrer1,2, Isabel Pardo1,2

1ENOLAB, BIOTECMED institute
2Department of Microbiology and Ecology, University of Valencia
3Regional Institute of Applied Scientific Research, University of Castilla-La Mancha

Contact the author*

Keywords

wine toxins, biogenic amines, mycotoxins, bacterial laccases

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities.
The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control.

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.