terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Abstract

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Laccases from lactic acid bacteria (LAB) belong to the group of multicopper oxidase enzymes with degrading activity of both phenolic and non-phenolic compounds using sometimes mediator substrates through complex reactions.

This work aimed to evaluate the BA and OTA degrading capacity of three heterologous LAB laccases from P. parvulus, L. paracasei and L. lactis, expressed in E. coli. The experimental assays were first developed in acetate buffer 50 mM with 0.1 mM CuSO4, added with complete polyphenolic compound (PFC) extracts from red (ERW) and white wines (EWW), and then in real wines from Tempranillo (RW) and Albariño varieties (WW). BA and OTA degradation was followed and quantified by analyzing samples with HPLC and HPLC-QToF-MS, respectively. Preliminary results are shown in Table 1, which seem to be promising for further analysis and applications.

Table 1. Degradation of BA and OTA by bacterial laccases.

Experiment matrix

Degradation percentage (%) of toxic compounds by the three LAB laccases

Histamine

Tyramine

Putrescine

OTA

Ppar

Lpar

Llac

Ppar

Lpar

Llac

Ppar

Lpar

Llac

Ppar

Lpar

Llac

PFC extract

ERW

9.2±2.7

3.3±4.6

0

20.3±0.6

31.5±3.4

0

31.2±4.5

20.5±6.2

0

40.4±1.4

34.9±0.7

45.0±0.8

EWW

7.3±3.7

0

0

12.9±5.4

0

0

23.1±5.6

1.2±1.7

0

4.4±1.8

10.3±0.8

14.7±0.8

Real wine

RW

1.0±1.4

22.9±3.8

0

3.8±5.3

33.1±3.3

0

0

2.1±2.9

1.1±1.5

*

*

*

WW

0

0

0

5.1±7.2

15.5±0.4

6.7±9.4

0

4.3±6.0

5.3±7.5

*

*

*

Acknowledgements: AGL2015-71227-R, RTI2018-095658-B-C31 and MSCA-IF GA 101022293.

References:

1)  Loi M. et al. (2018) In vitro single and combined mycotoxins degradation by Ery4 laccase from Pleurotus eryngii and redox mediators. Food Control, 90: 401-406.
2)  Callejón S. et al. (2016) Cloning and characterization of a new laccase from Lactobacillus plantarum J16 CECT 8944 catalyzing biogenic amines. Appl. Microbiol. Biotechnol., 100: 3113-3124.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Isaac Monroy1,2*, Isidoro Olmeda1, José Pérez-Navarro3, Sergio Gómez-Alonso3, Sergi Ferrer1,2, Isabel Pardo1,2

1ENOLAB, BIOTECMED institute
2Department of Microbiology and Ecology, University of Valencia
3Regional Institute of Applied Scientific Research, University of Castilla-La Mancha

Contact the author*

Keywords

wine toxins, biogenic amines, mycotoxins, bacterial laccases

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago.

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.