terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Abstract

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage. Treatments to reduce SO2 (SO2r=30mg/hl), chitosan (Q=10mg/hl), SO2r and chitosan (SO2r+Q) and a treatment without aggregate (SA). Also, a vinification was carried out with selected yeasts and usual doses of SO2 (VT). Fermentation kinetics and the composition of the devatted wine were analyzed, and microbiological evaluations of aerobic mesophiles, lactic acid bacteria (LAB), acetic acid bacteria (AAB) and yeasts were carried out during fermentation and devatting. The initial counts of each microbial group did not present differences between treatments. The AABs were only present at the beginning of the fermentation. Towards the end of fermentation, a decrease was observed in all populations in all treatments, except BAL in vinifications with SA. The yeast count in the SA treatments was higher than that observed in VT. The fermentation kinetics of the musts with LN was slower than with VT. The VT and SO2r+Q wines had higher alcohol and malic acid content, while the Q and SA wines had higher volatile acidity, lactic acid content and residual sugars upon devatting. Our results suggest that reduced doses of SO2 with chitosan maintain the characteristics of the wine in relation to traditional winemaking and may be a viable alternative to improve its conservation.

Acknowledgements: The researchers thank the Agenicia Nacional de Investigación e Innovación for the financial support of the project Evaluation of options to reduce the content of added sulfites in Tannat red wines.

References:

  1. Galati, A., Giorgio, S., Crescimanno, M., Migliore, G., 2019. “Natural wine” consumers and interest in label information: an analysis of willingness to pay in a new Italian wine market segment. Clean. Prod. 227, 405-413. https://doi.org/10.1016/j.jclepro.2019.04.219
  2. Giacomarra, M., Galati, A., Crescimanno, M., Tinervia, S., 2016. The integration of quality and safety concerns in the wine industry: the role of third-party voluntary certifications. J. Clean. Prod. 112 (1), 267-274. https://doi.org/10.1016/j.jclepro.2015.09.026.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Piccardo D.1, González M. 1, Favre G. 1, Clara A. 1, Olivera J. 1, González-Neves G. 1

1Unidad de Tecnología de los Alimentos. Facultad de Agronomía. Udelar. Garzón 780, Montevideo, Uruguay.

Contact the author*

Keywords

Tannat, natural method wine, sustainable viticulture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

Moderate wine consumption – part of a balanced diet or a health risk?

Consumption of wine/alcoholic beverages remains a topic of great uncertainty and controversy worldwide. The term “no safe level” dominates the media communication and policy ever since population studies in 2018 [1,2] were published, which denied the existence of a J-curve and suggested that ANY consumption of an alcoholic beverage is harmful to health. The scientific evidence accumulated during the past decades about the health benefits of moderate wine consumption, were questioned and drinking guidelines considered to be too loose.

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.