terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Abstract

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage. Treatments to reduce SO2 (SO2r=30mg/hl), chitosan (Q=10mg/hl), SO2r and chitosan (SO2r+Q) and a treatment without aggregate (SA). Also, a vinification was carried out with selected yeasts and usual doses of SO2 (VT). Fermentation kinetics and the composition of the devatted wine were analyzed, and microbiological evaluations of aerobic mesophiles, lactic acid bacteria (LAB), acetic acid bacteria (AAB) and yeasts were carried out during fermentation and devatting. The initial counts of each microbial group did not present differences between treatments. The AABs were only present at the beginning of the fermentation. Towards the end of fermentation, a decrease was observed in all populations in all treatments, except BAL in vinifications with SA. The yeast count in the SA treatments was higher than that observed in VT. The fermentation kinetics of the musts with LN was slower than with VT. The VT and SO2r+Q wines had higher alcohol and malic acid content, while the Q and SA wines had higher volatile acidity, lactic acid content and residual sugars upon devatting. Our results suggest that reduced doses of SO2 with chitosan maintain the characteristics of the wine in relation to traditional winemaking and may be a viable alternative to improve its conservation.

Acknowledgements: The researchers thank the Agenicia Nacional de Investigación e Innovación for the financial support of the project Evaluation of options to reduce the content of added sulfites in Tannat red wines.

References:

  1. Galati, A., Giorgio, S., Crescimanno, M., Migliore, G., 2019. “Natural wine” consumers and interest in label information: an analysis of willingness to pay in a new Italian wine market segment. Clean. Prod. 227, 405-413. https://doi.org/10.1016/j.jclepro.2019.04.219
  2. Giacomarra, M., Galati, A., Crescimanno, M., Tinervia, S., 2016. The integration of quality and safety concerns in the wine industry: the role of third-party voluntary certifications. J. Clean. Prod. 112 (1), 267-274. https://doi.org/10.1016/j.jclepro.2015.09.026.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Piccardo D.1, González M. 1, Favre G. 1, Clara A. 1, Olivera J. 1, González-Neves G. 1

1Unidad de Tecnología de los Alimentos. Facultad de Agronomía. Udelar. Garzón 780, Montevideo, Uruguay.

Contact the author*

Keywords

Tannat, natural method wine, sustainable viticulture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.

Wine without added SO2: Oxygen impact and color evolution during red wine aging

SO2 play a major role in wine stability and evolution during its aging and storage. Winemaking without SO2 is a big challenge for the winemakers since the lack of SO2 affects directly the wine chemical evolution such as the aromas compounds as well as the phenolic compounds. During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the mouthfeel organoleptic properties of wine, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen[2] thus the lack of SO2 will induce wine properties changes. Nowadays, the phenolic composition of the wine without added SO2 have not been clearly reported.

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.