terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Abstract

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage. Treatments to reduce SO2 (SO2r=30mg/hl), chitosan (Q=10mg/hl), SO2r and chitosan (SO2r+Q) and a treatment without aggregate (SA). Also, a vinification was carried out with selected yeasts and usual doses of SO2 (VT). Fermentation kinetics and the composition of the devatted wine were analyzed, and microbiological evaluations of aerobic mesophiles, lactic acid bacteria (LAB), acetic acid bacteria (AAB) and yeasts were carried out during fermentation and devatting. The initial counts of each microbial group did not present differences between treatments. The AABs were only present at the beginning of the fermentation. Towards the end of fermentation, a decrease was observed in all populations in all treatments, except BAL in vinifications with SA. The yeast count in the SA treatments was higher than that observed in VT. The fermentation kinetics of the musts with LN was slower than with VT. The VT and SO2r+Q wines had higher alcohol and malic acid content, while the Q and SA wines had higher volatile acidity, lactic acid content and residual sugars upon devatting. Our results suggest that reduced doses of SO2 with chitosan maintain the characteristics of the wine in relation to traditional winemaking and may be a viable alternative to improve its conservation.

Acknowledgements: The researchers thank the Agenicia Nacional de Investigación e Innovación for the financial support of the project Evaluation of options to reduce the content of added sulfites in Tannat red wines.

References:

  1. Galati, A., Giorgio, S., Crescimanno, M., Migliore, G., 2019. “Natural wine” consumers and interest in label information: an analysis of willingness to pay in a new Italian wine market segment. Clean. Prod. 227, 405-413. https://doi.org/10.1016/j.jclepro.2019.04.219
  2. Giacomarra, M., Galati, A., Crescimanno, M., Tinervia, S., 2016. The integration of quality and safety concerns in the wine industry: the role of third-party voluntary certifications. J. Clean. Prod. 112 (1), 267-274. https://doi.org/10.1016/j.jclepro.2015.09.026.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Piccardo D.1, González M. 1, Favre G. 1, Clara A. 1, Olivera J. 1, González-Neves G. 1

1Unidad de Tecnología de los Alimentos. Facultad de Agronomía. Udelar. Garzón 780, Montevideo, Uruguay.

Contact the author*

Keywords

Tannat, natural method wine, sustainable viticulture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.