terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Abstract

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage. Treatments to reduce SO2 (SO2r=30mg/hl), chitosan (Q=10mg/hl), SO2r and chitosan (SO2r+Q) and a treatment without aggregate (SA). Also, a vinification was carried out with selected yeasts and usual doses of SO2 (VT). Fermentation kinetics and the composition of the devatted wine were analyzed, and microbiological evaluations of aerobic mesophiles, lactic acid bacteria (LAB), acetic acid bacteria (AAB) and yeasts were carried out during fermentation and devatting. The initial counts of each microbial group did not present differences between treatments. The AABs were only present at the beginning of the fermentation. Towards the end of fermentation, a decrease was observed in all populations in all treatments, except BAL in vinifications with SA. The yeast count in the SA treatments was higher than that observed in VT. The fermentation kinetics of the musts with LN was slower than with VT. The VT and SO2r+Q wines had higher alcohol and malic acid content, while the Q and SA wines had higher volatile acidity, lactic acid content and residual sugars upon devatting. Our results suggest that reduced doses of SO2 with chitosan maintain the characteristics of the wine in relation to traditional winemaking and may be a viable alternative to improve its conservation.

Acknowledgements: The researchers thank the Agenicia Nacional de Investigación e Innovación for the financial support of the project Evaluation of options to reduce the content of added sulfites in Tannat red wines.

References:

  1. Galati, A., Giorgio, S., Crescimanno, M., Migliore, G., 2019. “Natural wine” consumers and interest in label information: an analysis of willingness to pay in a new Italian wine market segment. Clean. Prod. 227, 405-413. https://doi.org/10.1016/j.jclepro.2019.04.219
  2. Giacomarra, M., Galati, A., Crescimanno, M., Tinervia, S., 2016. The integration of quality and safety concerns in the wine industry: the role of third-party voluntary certifications. J. Clean. Prod. 112 (1), 267-274. https://doi.org/10.1016/j.jclepro.2015.09.026.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Piccardo D.1, González M. 1, Favre G. 1, Clara A. 1, Olivera J. 1, González-Neves G. 1

1Unidad de Tecnología de los Alimentos. Facultad de Agronomía. Udelar. Garzón 780, Montevideo, Uruguay.

Contact the author*

Keywords

Tannat, natural method wine, sustainable viticulture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Phenolic composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Grape and wine phenolic compounds have been shown to be highly related to both wine quality (color, flavor, and taste) and health-promoting properties (antioxidant and cardioprotective, among others). The aim of this work was to evaluate and compare the phenolic contents of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain vintage 2022. In addition, the phenolic profiles of the Portuguese wines from three vintages (2020, 2021, 2022) was compared.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).