terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Abstract

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage. Treatments to reduce SO2 (SO2r=30mg/hl), chitosan (Q=10mg/hl), SO2r and chitosan (SO2r+Q) and a treatment without aggregate (SA). Also, a vinification was carried out with selected yeasts and usual doses of SO2 (VT). Fermentation kinetics and the composition of the devatted wine were analyzed, and microbiological evaluations of aerobic mesophiles, lactic acid bacteria (LAB), acetic acid bacteria (AAB) and yeasts were carried out during fermentation and devatting. The initial counts of each microbial group did not present differences between treatments. The AABs were only present at the beginning of the fermentation. Towards the end of fermentation, a decrease was observed in all populations in all treatments, except BAL in vinifications with SA. The yeast count in the SA treatments was higher than that observed in VT. The fermentation kinetics of the musts with LN was slower than with VT. The VT and SO2r+Q wines had higher alcohol and malic acid content, while the Q and SA wines had higher volatile acidity, lactic acid content and residual sugars upon devatting. Our results suggest that reduced doses of SO2 with chitosan maintain the characteristics of the wine in relation to traditional winemaking and may be a viable alternative to improve its conservation.

Acknowledgements: The researchers thank the Agenicia Nacional de Investigación e Innovación for the financial support of the project Evaluation of options to reduce the content of added sulfites in Tannat red wines.

References:

  1. Galati, A., Giorgio, S., Crescimanno, M., Migliore, G., 2019. “Natural wine” consumers and interest in label information: an analysis of willingness to pay in a new Italian wine market segment. Clean. Prod. 227, 405-413. https://doi.org/10.1016/j.jclepro.2019.04.219
  2. Giacomarra, M., Galati, A., Crescimanno, M., Tinervia, S., 2016. The integration of quality and safety concerns in the wine industry: the role of third-party voluntary certifications. J. Clean. Prod. 112 (1), 267-274. https://doi.org/10.1016/j.jclepro.2015.09.026.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Piccardo D.1, González M. 1, Favre G. 1, Clara A. 1, Olivera J. 1, González-Neves G. 1

1Unidad de Tecnología de los Alimentos. Facultad de Agronomía. Udelar. Garzón 780, Montevideo, Uruguay.

Contact the author*

Keywords

Tannat, natural method wine, sustainable viticulture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.