terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Abstract

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

We have analyzed several degradation markers (total anthocyanin content, color intensity, CieLab parameter a*, absorbance at 520 nm and percentage of polymeric color) to compare the different light exposure conditions for rosé wines both inside of Antique Green and Flint bottles.

After 24 h of irradiation in the chamber, rosé wines in Flint bottles showed a decrease in TAC and A520 and an increase in %PC similar to that observed in the wines after 16 weeks under natural light conditions. However, the wines subjected to the different treatments in Antique Green bottles showed very different trends.

A 24h treatment in the insolation equipment correlate with 16 weeks of exposure to natural light conditions in terms of TAC and other markers directly related to their levels (A520 and %PC) only in rosé wines treated in Flint bottles.

Acknowledgements: 1. EUROSTARS 2019 program: E!113304-ROSÉ-FILTER project. 2. Proyectos de generación del conocimiento 2021: Ministerio de Ciencia y Educación de España: PID2021-122675OB-C21/C22-SOLANUM project.

References:

  1. Grant-Preece, P. et al. (2017). Light-induced changes in bottled white wine and underlying photochemical mechanisms. Critical reviews in food science and nutrition, 57(4), 743–754, DOI: http://dx.doi.org/10.1080/10408398.2014.919246
  2. Moriones, J. et al. (2023) Development of an irradiation equipment to accelerate the degradation of rosé wine in antique green and flint bottles, Current Research in Food Science, DOI: https://doi.org/10.1016/j.crfs.2023.100501

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Jennifer MORIONES (1,2)*, Nerea JIMÉNEZ-MORENO (2), Eluxka ALMANDOZ (1,2), Irene ESPARZA (2), Beatriz NAVARCORENA (1), Pablo AMÉZQUETA (1), Jonathan FERNÁNDEZ DE ARA (1) and Carmen ANCÍN-AZPILICUETA (2)

1Asociación de la Industria Navarra, Carretera Pamplona 1, 31191 Cordovilla, Spain
2Departamento de Ciencias, UPNA, Campus Arrosadía s/n, 31006 Pamplona, Spain

Contact the author*

Keywords

rosé wine, anthocyanin evolution, market light exposure, accelerated light exposure, photodegradation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Contamination problems arising from the use of pesticides in viticulture have raised concerns. One of the alternatives to reduce contamination is the use of elicitors, molecules capable of stimulating the natural defences of plants, promoting the production of phenolic compounds (PC) that offer protection against biotic and abiotic stress. Previous studies on Cabernet-Sauvignon seedlings demonstrated that foliar application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH) increased proteins and PC involved in grapevine defence mechanisms. However, no trials had been conducted on Monastrell seedlings, a major winegrape variety in Spain.

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).