terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Abstract

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

We have analyzed several degradation markers (total anthocyanin content, color intensity, CieLab parameter a*, absorbance at 520 nm and percentage of polymeric color) to compare the different light exposure conditions for rosé wines both inside of Antique Green and Flint bottles.

After 24 h of irradiation in the chamber, rosé wines in Flint bottles showed a decrease in TAC and A520 and an increase in %PC similar to that observed in the wines after 16 weeks under natural light conditions. However, the wines subjected to the different treatments in Antique Green bottles showed very different trends.

A 24h treatment in the insolation equipment correlate with 16 weeks of exposure to natural light conditions in terms of TAC and other markers directly related to their levels (A520 and %PC) only in rosé wines treated in Flint bottles.

Acknowledgements: 1. EUROSTARS 2019 program: E!113304-ROSÉ-FILTER project. 2. Proyectos de generación del conocimiento 2021: Ministerio de Ciencia y Educación de España: PID2021-122675OB-C21/C22-SOLANUM project.

References:

  1. Grant-Preece, P. et al. (2017). Light-induced changes in bottled white wine and underlying photochemical mechanisms. Critical reviews in food science and nutrition, 57(4), 743–754, DOI: http://dx.doi.org/10.1080/10408398.2014.919246
  2. Moriones, J. et al. (2023) Development of an irradiation equipment to accelerate the degradation of rosé wine in antique green and flint bottles, Current Research in Food Science, DOI: https://doi.org/10.1016/j.crfs.2023.100501

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Jennifer MORIONES (1,2)*, Nerea JIMÉNEZ-MORENO (2), Eluxka ALMANDOZ (1,2), Irene ESPARZA (2), Beatriz NAVARCORENA (1), Pablo AMÉZQUETA (1), Jonathan FERNÁNDEZ DE ARA (1) and Carmen ANCÍN-AZPILICUETA (2)

1Asociación de la Industria Navarra, Carretera Pamplona 1, 31191 Cordovilla, Spain
2Departamento de Ciencias, UPNA, Campus Arrosadía s/n, 31006 Pamplona, Spain

Contact the author*

Keywords

rosé wine, anthocyanin evolution, market light exposure, accelerated light exposure, photodegradation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality.

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.

Effect of riboflavin on the longevity of white and rosé wines

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF).

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.