terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Abstract

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

We have analyzed several degradation markers (total anthocyanin content, color intensity, CieLab parameter a*, absorbance at 520 nm and percentage of polymeric color) to compare the different light exposure conditions for rosé wines both inside of Antique Green and Flint bottles.

After 24 h of irradiation in the chamber, rosé wines in Flint bottles showed a decrease in TAC and A520 and an increase in %PC similar to that observed in the wines after 16 weeks under natural light conditions. However, the wines subjected to the different treatments in Antique Green bottles showed very different trends.

A 24h treatment in the insolation equipment correlate with 16 weeks of exposure to natural light conditions in terms of TAC and other markers directly related to their levels (A520 and %PC) only in rosé wines treated in Flint bottles.

Acknowledgements: 1. EUROSTARS 2019 program: E!113304-ROSÉ-FILTER project. 2. Proyectos de generación del conocimiento 2021: Ministerio de Ciencia y Educación de España: PID2021-122675OB-C21/C22-SOLANUM project.

References:

  1. Grant-Preece, P. et al. (2017). Light-induced changes in bottled white wine and underlying photochemical mechanisms. Critical reviews in food science and nutrition, 57(4), 743–754, DOI: http://dx.doi.org/10.1080/10408398.2014.919246
  2. Moriones, J. et al. (2023) Development of an irradiation equipment to accelerate the degradation of rosé wine in antique green and flint bottles, Current Research in Food Science, DOI: https://doi.org/10.1016/j.crfs.2023.100501

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Jennifer MORIONES (1,2)*, Nerea JIMÉNEZ-MORENO (2), Eluxka ALMANDOZ (1,2), Irene ESPARZA (2), Beatriz NAVARCORENA (1), Pablo AMÉZQUETA (1), Jonathan FERNÁNDEZ DE ARA (1) and Carmen ANCÍN-AZPILICUETA (2)

1Asociación de la Industria Navarra, Carretera Pamplona 1, 31191 Cordovilla, Spain
2Departamento de Ciencias, UPNA, Campus Arrosadía s/n, 31006 Pamplona, Spain

Contact the author*

Keywords

rosé wine, anthocyanin evolution, market light exposure, accelerated light exposure, photodegradation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Climate change and viticulture in Nordic Countries and the Helsinki area

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.