terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Abstract

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

We have analyzed several degradation markers (total anthocyanin content, color intensity, CieLab parameter a*, absorbance at 520 nm and percentage of polymeric color) to compare the different light exposure conditions for rosé wines both inside of Antique Green and Flint bottles.

After 24 h of irradiation in the chamber, rosé wines in Flint bottles showed a decrease in TAC and A520 and an increase in %PC similar to that observed in the wines after 16 weeks under natural light conditions. However, the wines subjected to the different treatments in Antique Green bottles showed very different trends.

A 24h treatment in the insolation equipment correlate with 16 weeks of exposure to natural light conditions in terms of TAC and other markers directly related to their levels (A520 and %PC) only in rosé wines treated in Flint bottles.

Acknowledgements: 1. EUROSTARS 2019 program: E!113304-ROSÉ-FILTER project. 2. Proyectos de generación del conocimiento 2021: Ministerio de Ciencia y Educación de España: PID2021-122675OB-C21/C22-SOLANUM project.

References:

  1. Grant-Preece, P. et al. (2017). Light-induced changes in bottled white wine and underlying photochemical mechanisms. Critical reviews in food science and nutrition, 57(4), 743–754, DOI: http://dx.doi.org/10.1080/10408398.2014.919246
  2. Moriones, J. et al. (2023) Development of an irradiation equipment to accelerate the degradation of rosé wine in antique green and flint bottles, Current Research in Food Science, DOI: https://doi.org/10.1016/j.crfs.2023.100501

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Jennifer MORIONES (1,2)*, Nerea JIMÉNEZ-MORENO (2), Eluxka ALMANDOZ (1,2), Irene ESPARZA (2), Beatriz NAVARCORENA (1), Pablo AMÉZQUETA (1), Jonathan FERNÁNDEZ DE ARA (1) and Carmen ANCÍN-AZPILICUETA (2)

1Asociación de la Industria Navarra, Carretera Pamplona 1, 31191 Cordovilla, Spain
2Departamento de Ciencias, UPNA, Campus Arrosadía s/n, 31006 Pamplona, Spain

Contact the author*

Keywords

rosé wine, anthocyanin evolution, market light exposure, accelerated light exposure, photodegradation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]

Evaluation of phenology, agronomic and oenological quality in minority wine varieties in Madrid as a strategy for adaptation to climate change

The main phenological stages (budburst, flowering, veraison, and ripeness) and the fruit composition of 34 Spanish minority varieties were studied to determine their cultivation potential and help winegrowers adapt their production systems to climate change conditions. In total, 4 control cultivars, and 30 minority varieties from central Spain were studied during a period of 3 campaigns, in the ampelographic collection “El Encín”, in Alcalá de Henares, Madrid. Agronomic and oenological characteristics such as yield, and total soluble solids concentration have been monitored.

First results on the chemical composition of red wines from the pressing of marc

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022.