terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

Abstract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet. The European Union establishes that the limits for total SO2 content may not exceed 200 mg/L for red wines with a sugar content higher than 5 g/L, whereas the threshold for an adverse reaction varies between 5 and 200 mg/L SO2. The gut microbiome is now considered a therapeutic target for many pathologies and for general health status. Recent research has highlighted the potential of wine to modulate the gut microbiome, mainly attributed to its phenolic content and diversity. To our knowledge, very few studies have addressed the effects of sulphites on the gut microbiota, which could be mediated by the dietary matrix. Therefore, the novel question that arises is whether the presence of sulphites in wine may also affect our gut microbiome. To disclose this matter, we have designed an in vitro study based on the simulated gastrointestinal digestion in the simgi® simulator of the following comparative wines: a) synthetic wine, b) synthetic wine fortified with SO2 (200 mg/L), c) young red wine (2,8 mg/L of free SO2), and d) young red wine fortified with SO2 (200 mg/L). The following analyses were performed in the wines after intestinal and colonic (0, 6, 24, and 48h) digestions: free and bound SO2 by the PAUL-Rankine method (OIV-MA-AS323-04A), microbial plate counting, qPCR and 16S rDNA sequencing, microbial ammonium production, short chain fatty acids (SCFA) by SMPE-GCMS, and phenolic metabolites by UPLC-ESI-MSMS. The results indicate that, at least to some extent, the addition of sulphites to wine may have an impact on the gut microbiome, although this may be dependent on the composition of the wine, especially with regard to its phenolic content.

Acknowledgements: MICIN (PID2019-108851RB-C21 Project). The authors would also like to thank R. de Diego for sound technical assistance.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

E. Relaño de la Guia1, C. Cueva1, N. Molinero1, M.J.Motilva2,  B. Bartolomé1, M.V. Moreno-Arribas

1Institute of Food Science Research (CIAL), CSIC-UAM, 28049 Madrid, Spain
2Institute of Grapevine and Wine Sciences (ICVV), CSIC-University of La Rioja-Government of La Rioja, 26007 Logroño (La Rioja), Spain

Contact the author*

Keywords

wine, SO2, gut microbiome, 16S rDNA sequencing, SCFA, phenolic metabolites

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.

Effect of riboflavin on the longevity of white and rosé wines

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF).

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.