terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

Abstract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet. The European Union establishes that the limits for total SO2 content may not exceed 200 mg/L for red wines with a sugar content higher than 5 g/L, whereas the threshold for an adverse reaction varies between 5 and 200 mg/L SO2. The gut microbiome is now considered a therapeutic target for many pathologies and for general health status. Recent research has highlighted the potential of wine to modulate the gut microbiome, mainly attributed to its phenolic content and diversity. To our knowledge, very few studies have addressed the effects of sulphites on the gut microbiota, which could be mediated by the dietary matrix. Therefore, the novel question that arises is whether the presence of sulphites in wine may also affect our gut microbiome. To disclose this matter, we have designed an in vitro study based on the simulated gastrointestinal digestion in the simgi® simulator of the following comparative wines: a) synthetic wine, b) synthetic wine fortified with SO2 (200 mg/L), c) young red wine (2,8 mg/L of free SO2), and d) young red wine fortified with SO2 (200 mg/L). The following analyses were performed in the wines after intestinal and colonic (0, 6, 24, and 48h) digestions: free and bound SO2 by the PAUL-Rankine method (OIV-MA-AS323-04A), microbial plate counting, qPCR and 16S rDNA sequencing, microbial ammonium production, short chain fatty acids (SCFA) by SMPE-GCMS, and phenolic metabolites by UPLC-ESI-MSMS. The results indicate that, at least to some extent, the addition of sulphites to wine may have an impact on the gut microbiome, although this may be dependent on the composition of the wine, especially with regard to its phenolic content.

Acknowledgements: MICIN (PID2019-108851RB-C21 Project). The authors would also like to thank R. de Diego for sound technical assistance.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

E. Relaño de la Guia1, C. Cueva1, N. Molinero1, M.J.Motilva2,  B. Bartolomé1, M.V. Moreno-Arribas

1Institute of Food Science Research (CIAL), CSIC-UAM, 28049 Madrid, Spain
2Institute of Grapevine and Wine Sciences (ICVV), CSIC-University of La Rioja-Government of La Rioja, 26007 Logroño (La Rioja), Spain

Contact the author*

Keywords

wine, SO2, gut microbiome, 16S rDNA sequencing, SCFA, phenolic metabolites

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Chemical and microbiological evaluation of Ribeiro wines (NW Spain)

Wine produced under Designation of Origin (DOP) Ribeiro, the oldest DOP in Galicia (NW Spain), are elaborated using local grape cultivars, grown at the valleys of Miño, Avia and Arnoia rivers. The landscape formed by slopes and terraces and the peculiar climate of continental character, softened by the proximity of Atlantic Ocean, make it an area of excellent aptitude for vine cultivation. In addition, small-scale farming and the use of traditional techniques for vineyard management provide a great diversity to Ribeiro wines. This study presents the evaluation of red and white wines (bottled or bulk wines) from DOP Ribeiro, produced between years 2018-2022.

Towards the understanding of wine distillation in the production of brandy de Jerez. Chemical and sensory characterization of two distillation methods: continuous and batch distillation

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (1) and varies each year of harvest depending on the weather conditions (2).

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.