terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

Abstract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet. The European Union establishes that the limits for total SO2 content may not exceed 200 mg/L for red wines with a sugar content higher than 5 g/L, whereas the threshold for an adverse reaction varies between 5 and 200 mg/L SO2. The gut microbiome is now considered a therapeutic target for many pathologies and for general health status. Recent research has highlighted the potential of wine to modulate the gut microbiome, mainly attributed to its phenolic content and diversity. To our knowledge, very few studies have addressed the effects of sulphites on the gut microbiota, which could be mediated by the dietary matrix. Therefore, the novel question that arises is whether the presence of sulphites in wine may also affect our gut microbiome. To disclose this matter, we have designed an in vitro study based on the simulated gastrointestinal digestion in the simgi® simulator of the following comparative wines: a) synthetic wine, b) synthetic wine fortified with SO2 (200 mg/L), c) young red wine (2,8 mg/L of free SO2), and d) young red wine fortified with SO2 (200 mg/L). The following analyses were performed in the wines after intestinal and colonic (0, 6, 24, and 48h) digestions: free and bound SO2 by the PAUL-Rankine method (OIV-MA-AS323-04A), microbial plate counting, qPCR and 16S rDNA sequencing, microbial ammonium production, short chain fatty acids (SCFA) by SMPE-GCMS, and phenolic metabolites by UPLC-ESI-MSMS. The results indicate that, at least to some extent, the addition of sulphites to wine may have an impact on the gut microbiome, although this may be dependent on the composition of the wine, especially with regard to its phenolic content.

Acknowledgements: MICIN (PID2019-108851RB-C21 Project). The authors would also like to thank R. de Diego for sound technical assistance.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

E. Relaño de la Guia1, C. Cueva1, N. Molinero1, M.J.Motilva2,  B. Bartolomé1, M.V. Moreno-Arribas

1Institute of Food Science Research (CIAL), CSIC-UAM, 28049 Madrid, Spain
2Institute of Grapevine and Wine Sciences (ICVV), CSIC-University of La Rioja-Government of La Rioja, 26007 Logroño (La Rioja), Spain

Contact the author*

Keywords

wine, SO2, gut microbiome, 16S rDNA sequencing, SCFA, phenolic metabolites

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.