terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

Abstract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet. The European Union establishes that the limits for total SO2 content may not exceed 200 mg/L for red wines with a sugar content higher than 5 g/L, whereas the threshold for an adverse reaction varies between 5 and 200 mg/L SO2. The gut microbiome is now considered a therapeutic target for many pathologies and for general health status. Recent research has highlighted the potential of wine to modulate the gut microbiome, mainly attributed to its phenolic content and diversity. To our knowledge, very few studies have addressed the effects of sulphites on the gut microbiota, which could be mediated by the dietary matrix. Therefore, the novel question that arises is whether the presence of sulphites in wine may also affect our gut microbiome. To disclose this matter, we have designed an in vitro study based on the simulated gastrointestinal digestion in the simgi® simulator of the following comparative wines: a) synthetic wine, b) synthetic wine fortified with SO2 (200 mg/L), c) young red wine (2,8 mg/L of free SO2), and d) young red wine fortified with SO2 (200 mg/L). The following analyses were performed in the wines after intestinal and colonic (0, 6, 24, and 48h) digestions: free and bound SO2 by the PAUL-Rankine method (OIV-MA-AS323-04A), microbial plate counting, qPCR and 16S rDNA sequencing, microbial ammonium production, short chain fatty acids (SCFA) by SMPE-GCMS, and phenolic metabolites by UPLC-ESI-MSMS. The results indicate that, at least to some extent, the addition of sulphites to wine may have an impact on the gut microbiome, although this may be dependent on the composition of the wine, especially with regard to its phenolic content.

Acknowledgements: MICIN (PID2019-108851RB-C21 Project). The authors would also like to thank R. de Diego for sound technical assistance.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

E. Relaño de la Guia1, C. Cueva1, N. Molinero1, M.J.Motilva2,  B. Bartolomé1, M.V. Moreno-Arribas

1Institute of Food Science Research (CIAL), CSIC-UAM, 28049 Madrid, Spain
2Institute of Grapevine and Wine Sciences (ICVV), CSIC-University of La Rioja-Government of La Rioja, 26007 Logroño (La Rioja), Spain

Contact the author*

Keywords

wine, SO2, gut microbiome, 16S rDNA sequencing, SCFA, phenolic metabolites

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.