terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

Abstract

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices). The trial was carried out in an experimental vineyard of the Tempranillo variety, located in a semi-arid area (Badajoz, Spain). CW and FW were elaborated according to the traditional methods for red wine. Then, 25FW, 50FW and 75FW wines were prepared by blending 25,50 and 75% FW and CW respectively and analyzed after the stabilization stage. Total Polyphenolic content, anthocyanins, catechins, the contribution to color due to copigmented anthocyanins and chromatic parameters were analyzed by spectrophotometric methods. The results obtained were subjected to ANOVA and PCA analyses. The sequence FW > 75FW> 50FW> 25FW> CW was observed for all the parameters evaluated and significant differences were found for most of them in 50FW, 75FW and FW with respect to CW. The PCA showed a good separation between CW and 25FW and the rest of the blending wines. Blending improved the phenolic and chromatic characteristics of CW by using the appropriate proportions of CW and FW. In addition, this could be a way to rent out the economic damage caused by the forcing application.

Acknowledgements: This research was supported by funds from Project IB20082, the ERDF and Junta de Extremadura, AGA001 (GR21196).

DOI:

Publication date: October 24, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. Esperanza Valdés-Sánchez1, Daniel Moreno-Cardona1, Nieves Lavado-Rodas1, David Uriarte-Hernandez2, Luis Mancha-Ramírez2, Antonia M. Vacas Ramos2 y M. Henar Prieto- Losada2

1 CICYTEX (Junta de Extremadura), Instituto Tecnológico Agroalimentario de Extremadura, Avda Adolfo Suárez s/n, Badajoz, Spain

2 CICYTEX (Junta de Extremadura), Finca La Orden, Guadajira, Badajoz, Spain

Contact the author*

Keywords

anthocyanins, catechins, copigmentation, hue, color intensity

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.

Sugar accumulation disorder Berry Shrivel – from current knowledge towards novel hypothesis

In contrast to fruit and grape berry ripening, the biological processes causing ripening disorders are often much less understood, although shriveling disorders of fruits are manifold and contribute to yield losses and reduced fruit quality worldwide. Shrinking berries are a common feature for all shriveling disorders in grapevine although their timing of appearance during the berry ripening process and their underlying induction processes distinct them from each other. The sugar accumulation disorder Berry Shrivel (BS) is characterized by a suppression of sugar accumulation short after veraison resulting in berries low in sugar content and anthocyanins in berry skins, while the organic acid content is similar. Recent studies analyzed the biochemical, morphological and molecular processes affected in BS berries and linked early changes to the period of ripening onset [1,2].

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.