terclim by ICS banner
IVES 9 IVES Conference Series 9 SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Abstract

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are ex-posed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity. The sole effect of temperature was investigated on well-irrigated potted Shiraz grapevines grown in a glasshouse, where either the whole vine or bunches-only were heated using fans. For both experiments, berries were sampled at harvest, peeled, ground and total flavonoids were extracted using 60% acetone [2]. Two additional assays evaluated the potential temperature impact on subsequent wine composition using wine-like extraction (15% ethanol) [3] or micro-scale winemaking. Detailed tannin composition was primarily determined by LC-MS/MS after phloroglucinolysis [2], with complementary total tannin concentration (methyl cellulose precipitable assay). Secondary metabolites such as phenolic acid and anthocyanins were also analyzed.

The present work showed that short spells of high temperature may not impact on skin and seed tannin extractability when assessed on visually undamaged berries by harvest. Indeed, while total skin tannin concentrations, extracted with 60% acetone, were clearly reduced by a rise of temperature around véraison, skin extractable tannin (15% ethanol) and seed tannin concentrations were not impacted. In damaged berries at harvest, skin tannins were dramatically reduced while seed tannins were mostly preserved. Wine quality, made with a mix of heat-damaged and undamaged berries, was significantly reduced when about 20% (by mass) of the berries were visually damaged and necrotic, corresponding to about 50% of damaged berries (in number). Maintaining wine quality under a changing climate with more frequent extreme events leading to heat stress and/or water stress is challenging. However, this study showed that the impact of heatwaves in the vineyard may be compensated by a better extraction during winemaking and require further investigations at winery scales.

 

1. Gouot, J. C., Smith, J. P., Holzapfel, B. P., Walker, A. R., & Barril, C. (2019d). Grape berry flavonoids: a review of their biochemical responses to high and extreme high temperatures. Journal of Experimental Botany, 70(2), 397-423
2. Pinasseau, L., Verbaere, A., Roques, M., Meudec, E., Vallverdú-Queralt, A., Terrier, N., Boulet, J.-C., Cheynier, V., & Sommerer, N. (2016). A fast and robust UHPLC-MRM-MS method to characterize and quantify grape skin tannins after chemical depolymerization. Molecules, 21(10), 1409.
3. Bindon, K. A., Kassara, S., & Smith, P. A. (2017). Towards a model of grape tannin extraction under wine-like conditions: the role of suspended mesocarp material and anthocyanin concentration. Australian Journal of Grape and Wine Research, 23(1), 22-32 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Julia GOUOT1,2, Jason SMITH1,4, Bruno HOLZAPFEL5, Celia BARRIL1,3

1. School of Agricultural, Environmental and Veterinary Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
2. Current address : Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
3. Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
4. New South Wales Department of Primary Industries, Orange, New South Wales, 2800, Australia
5. Wagga Wagga Agriculture Institute, New South Wales Department of Primary Industries, Wagga Wagga, NSW 2650, Australia

Contact the author*

Keywords

Extractability, High temperature, Flavonoids, Tannins

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

OENOLOGICAL POTENTIAL OF AUTOCHTHONOUS SACCHAROMYCES CEREVISIAE STRAINS AND THEIR EFFECT ON THE PRODUCTION OF TYPICAL SAVATIANO WINES

Due to the global demand for terroir wines, the winemaking industry has focused attention on exploiting the local yeast microflora of each wine growing region to express the regional character and enhance the sensory profile of wines such as varietal typicity and aroma complexity. The objective of the present study was to isolate and compare the indigenous strains of Saccharomyces cerevisiae present in different vineyards in the Mesogeia – Attiki wine region (Greece), evaluate their impact on chemical composition and sensory profile of Savatiano wines and select the most suitable ones for winemaking process.