OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 A new graphical interface as a tool to integrate data from GC-MS and UPLC-MS-QTOF: new compounds related with port wine aging

A new graphical interface as a tool to integrate data from GC-MS and UPLC-MS-QTOF: new compounds related with port wine aging

Abstract

Port wine value is related to its molecular profile resulting from the changes occurring during the ageing period. It is of empirical knowledge that the style is greatly affected by the oxidation regimens, i.e. bottle versus barrel storage. The final quality is rated based on sensory evaluation and the correspondent chemical profile remains largely unknown. This lack of knowledge and understanding significantly limits the ability to improve/drive Port Wine quality and consistency. 

Unravelling the chemical changes, occurring during ageing, that are responsible for the wine flavour, constitutes a critical task when one attempts to address issues related to authenticity and sensory quality. 

It has been demonstrated that some key odorants play a critical role in the perceived oxidized character of wines (1, 2). Nevertheless, the mechanisms for these key odorants formation are not fully understood; only that temperature and mainly oxygen have a synergistic impact on their formation (3). Recently it has been demonstrated that Strecker degradation substrates such as: phenolics, sugars and metals can interact resulting in a unpredictable formation of flavour molecules. 

In order to have an holistic view of the chemical system a pipeline was developed based on UPLS-MS-QTOF and GC-MS data acquisition followed by data fusion. The process is hyphenated with an in-house peak picking interface, coupled with multi- and -univariate statistics to get the most relevant compounds related in this case with Ports stored from 1 to 150 years old. 

In this work the “omics” interface was validated with a set of 37 wines; 42 biomarkers were extracted from GC-MS and 152 from UPLC-MS-QTOF. 

The development of tools such as network reconstruction provided considerable amount of information that contributed to the understanding of the kinetic contexts of the molecules (through ageing time). Clusterization of volatiles and non-volatile compounds brought further new information regarding the interaction between mechanisms and new compounds were identified, such as: SO2-phenolics reactions, phenolics-phenolics , phenolics-aldehydes, amongst other. 

This network-driven approach, integrating data from different equipment’s. has proven to be an useful tool in identifying compounds of interest related to changes occurring during food storage or ageing processes, as well as in better understanding the drivers of quality and authenticity in the final product.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Ana Rita Monforte, Sara Martins, António César Silva Ferreira

Wageningen University, The Netherlands. Unilever R&D Vlaardingen, 3130 AC Vlaardingen, The Netherlands
Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina. – Laboratório Associado, Escola Superior de Biotecnologia – Rua Arquiteto Lobão Vital, 172 4200-374 Porto

Contact the author

Keywords

data-fusion, Port, ageing, omics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Viticultural characterisation of soils from triassic period at Beaumes-de-Venise (Côtes du Rhône, France)

Wineries of Beaumes-de-Venise area make their best red wines with grapes from the “Triassic terroir”. This « terroir » is characterized by soils from the Triassic period. These specific soils are complex and quite heterogeneous. They originate from an eventful geological history to keep in mind to understand soils geographical distribution.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Comportamiento de la variedade “Touriga Nacional” en la Región Demarcada del Douro, en diferentes condiciones climáticas y edáficas

A Região Demarcada do Douro, oferece uma diversidade geográfica, climática e biológica (grande número de castas em cultivo) extremamente grande e complexa, originando vinhas

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.