OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 A new graphical interface as a tool to integrate data from GC-MS and UPLC-MS-QTOF: new compounds related with port wine aging

A new graphical interface as a tool to integrate data from GC-MS and UPLC-MS-QTOF: new compounds related with port wine aging

Abstract

Port wine value is related to its molecular profile resulting from the changes occurring during the ageing period. It is of empirical knowledge that the style is greatly affected by the oxidation regimens, i.e. bottle versus barrel storage. The final quality is rated based on sensory evaluation and the correspondent chemical profile remains largely unknown. This lack of knowledge and understanding significantly limits the ability to improve/drive Port Wine quality and consistency. 

Unravelling the chemical changes, occurring during ageing, that are responsible for the wine flavour, constitutes a critical task when one attempts to address issues related to authenticity and sensory quality. 

It has been demonstrated that some key odorants play a critical role in the perceived oxidized character of wines (1, 2). Nevertheless, the mechanisms for these key odorants formation are not fully understood; only that temperature and mainly oxygen have a synergistic impact on their formation (3). Recently it has been demonstrated that Strecker degradation substrates such as: phenolics, sugars and metals can interact resulting in a unpredictable formation of flavour molecules. 

In order to have an holistic view of the chemical system a pipeline was developed based on UPLS-MS-QTOF and GC-MS data acquisition followed by data fusion. The process is hyphenated with an in-house peak picking interface, coupled with multi- and -univariate statistics to get the most relevant compounds related in this case with Ports stored from 1 to 150 years old. 

In this work the “omics” interface was validated with a set of 37 wines; 42 biomarkers were extracted from GC-MS and 152 from UPLC-MS-QTOF. 

The development of tools such as network reconstruction provided considerable amount of information that contributed to the understanding of the kinetic contexts of the molecules (through ageing time). Clusterization of volatiles and non-volatile compounds brought further new information regarding the interaction between mechanisms and new compounds were identified, such as: SO2-phenolics reactions, phenolics-phenolics , phenolics-aldehydes, amongst other. 

This network-driven approach, integrating data from different equipment’s. has proven to be an useful tool in identifying compounds of interest related to changes occurring during food storage or ageing processes, as well as in better understanding the drivers of quality and authenticity in the final product.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Ana Rita Monforte, Sara Martins, António César Silva Ferreira

Wageningen University, The Netherlands. Unilever R&D Vlaardingen, 3130 AC Vlaardingen, The Netherlands
Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina. – Laboratório Associado, Escola Superior de Biotecnologia – Rua Arquiteto Lobão Vital, 172 4200-374 Porto

Contact the author

Keywords

data-fusion, Port, ageing, omics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Smartphone as a tool for deficit irrigation management in Vitis vinifera  

Vine water status is one of the most influential factors in grape vigor, yield, and quality (Ojeda et al., 2002; Guilpart et al., 2014). Severe water deficits during the first stage of crop development (bud break to fruit set) impact yield in the current year and the following year. While during grape ripening, water availability impacts berry size, grape composition, and health status. Therefore, a correct assessment of plant water status allows for proper water management with an impact on grape yield and composition (McClymont et al, 2012; Pereyra et al., 2022).

Effect of ozone treatments in wine production of young and short-term aged white wines: destructive and non-destructive evaluation of main quality attributes

The main aim of WiSSaTech project (PRIN P2022LXY3A), supported by Italian Ministero dell’Università e della Ricerca and NextGenerationEU program, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.

Influence of phenolic composition and antioxidant properties on the ageing potential of Syrah red wines measured by accelerated ageing tests.

Red wine ageing impacts its chemical and sensory characteristics such as colour, astringency and aromas evolution. Wine ageing involves many chemicals and physico-chemical reactions. Oxygen has an important role in these evolutions, especially during bottle ageing. It is known that wine composition and its antioxidant capacity are correlated to its ability to undergo with oxygen exposure [1]. A high oxygen exposure can affect wine quality by the formation of undesirable oxidative volatile compounds such as acetaldehyde [2]. Thus, ageing capacity is an important factor for wine quality and is related to extent of oxidation with ageing [3].

The concept of terroir: what place for microbiota?

Microbes play key roles on crop nutrient availability via biogeochemical cycles, rhizosphere interactions with roots as well as on plant growth and health. Recent advances in technologies, such as High Throughput Sequencing Techniques, allowed to gain deeper insight on the structure of bacterial and fungal communities associated with soil, rhizosphere and plant phyllosphere. Over the past 10 years, numerous scientific studies have been carried out on the microbial component of the vineyard. Whether the soil or grape compartments have been taken into account, many studies agree on the evidence of regional delineations of microbial communities, that may contribute to regional wine characteristics and typicity. Some authors proposed the term “microbial terroir” including “yeast terroir” for grapes to describe the connection between microbial biogeography and regional wine characteristics. Many factors are involved in terroir including climate, soil, cultivar and human practices as well as their interactions. Studies considering “microbial terroir” greatly contributed to improve our knowledge on factors that shape the vineyard microbial structure and diversity. However, the potential impact of “microbial terroir” on wine composition has yet not received strong scientific evidence and many questions remain to be addressed, related to the functional characterization of the microbial community and its impact on plant physiology and grape composition, the origins and interannual stability of vineyard microbiota, as well as their impact on wine sensorial attributes. The presentation will give an overview on the role of microbiota as a terroir component and will highlight future perspectives and challenges on this key subject for the wine industry.

Evolution of grape aromatic composition in cv. Ugni blanc

Cognac is a protected appellation of origin where world-famous brandies are produced. These brandies are obtained by the traditional double distillation of wines from Ugni blanc cultivar