terclim by ICS banner
IVES 9 IVES Conference Series 9 Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Abstract

Developing rootstocks adapted to environmental constraints constitutes a key lever for grapevine adaptation to climate change. In this context, Near Infrared Spectroscopy (NIRS) could be used as a high-throughput phenotyping technique to simplify the study of rootstocks in grafted situations. This study is an exploratory analysis to evaluate the potential of NIRS acquired on grafted tissues to reveal rootstock effects as well as the plasticity of combinations of scion/rootstock to better characterize these interactions.
Through the study of 25 combinations (5 scions times 5 rootstocks) in a dedicated experimental vineyard, we showed that NIRS obtained from grafted tissues capture rootstock and scion/rootstock interaction signals, up to 20% of the total variance at specific wavelengths. Yet, the scion effect on the spectra remains dominant over the rootstock effect, which is also the case for agronomic traits. Using NIRS data on dried leaves, which were found to best capture the rootstock effect compared to measurements on wood or fresh leaves, spectral wavelengths specific to the rootstock effect could be identified.
Predictions at the vine level carried out on twenty-eight phenotypic traits showed that those related to phenology and vigor being were better predicted. Three spectral regions were consistently identified as contributing to predictions and to differences between scion/rootstock combinations. Using data from these regions yielded predictive models as accurate as those built with the entire spectral range, underlining that NIRS capture useful information related to the combination rootstock/scion which opens prospects towards the possibility of using this methodology in a breeding context.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Marie-Gabrielle Harribey1, Jean-Pascal Tandonnet2, Marine Morel2, Virginie Bouckenooghe3,4, Elisa Marguerit2, Vincent Segura4,5, Nathalie Ollat2*

1 UMR BIOGECO, Univ. Bordeaux, INRAE, CIRAD, 33 Cestas, France
2 EGFV, Univ.Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
3 IFV, 30240, Le Grau du Roi, France
4 UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
5 UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France

Contact the author*

Keywords

NIRS, phenomic prediction, rootstock, scion/rootstock interaction, field phenotyping

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.

Multidisciplinary strategies for understanding ill-defined concepts

Aims: The objective of the present work is to review strategies applied to decrypt multidimensional and ill-defined concepts employed by winemakers and to illustrate these strategies with recent applications.

Potential of native Uruguayan yeast strains for production of Tannat wine

Must fermentation is a complex process influenced by various factors, especially microbiological activities. The characteristics and quality of the resulting wine are closely linked to the stages that unfold throughout this progression.

Addition of Malvasia di Candia Aromatica must and marcs to Golden Ale beer wort to obtain different Italian Grape Ales

Nowadays, the recovery of secondary resources of wine industry is insufficient and the developing of new products and adjuvants from secondary raw materials could become a relevant sector of research. The re-use of byproducts derived from winemaking could improve the sustainability of wine industry and give additional value to other food industries

‘Cabernet Sauvignon’ (Vitis vinifera L.) berry skin flavonol and anthocyanin composition is affected by trellis systems and applied water amounts

Trellis systems are selected in wine grape vineyards to mainly maximize vineyard yield and maintain berry quality. This study was conducted in 2020 and 2021 to evaluate six commonly utilized trellis systems including a vertical shoot positioning (VSP), two relaxed VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a guyot (GY), combined with three levels of irrigation regimes based on different crop evapotranspiration (ETc) replacements, including a 25% ETc, 50% ETc, and 100% ETc. The results indicated SH yielded the most fruits and accumulated the most total soluble solids (TSS) at harvest in 2020, however, it showed the lowest TSS in the second season. In 2020, SH and HQ showed higher concentrations in most of the anthocyanin derivatives compared to the VSPs. Similar comparisons were noticed in 2021 as well. SH and HQ also accumulated more flavonols in both years compared to other trellis systems. Overall, this study provides information on the efficacy of trellis systems on grapevine yield and berry flavonoid accumulation in a currently warming climate.