terclim by ICS banner
IVES 9 IVES Conference Series 9 Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Abstract

Developing rootstocks adapted to environmental constraints constitutes a key lever for grapevine adaptation to climate change. In this context, Near Infrared Spectroscopy (NIRS) could be used as a high-throughput phenotyping technique to simplify the study of rootstocks in grafted situations. This study is an exploratory analysis to evaluate the potential of NIRS acquired on grafted tissues to reveal rootstock effects as well as the plasticity of combinations of scion/rootstock to better characterize these interactions.
Through the study of 25 combinations (5 scions times 5 rootstocks) in a dedicated experimental vineyard, we showed that NIRS obtained from grafted tissues capture rootstock and scion/rootstock interaction signals, up to 20% of the total variance at specific wavelengths. Yet, the scion effect on the spectra remains dominant over the rootstock effect, which is also the case for agronomic traits. Using NIRS data on dried leaves, which were found to best capture the rootstock effect compared to measurements on wood or fresh leaves, spectral wavelengths specific to the rootstock effect could be identified.
Predictions at the vine level carried out on twenty-eight phenotypic traits showed that those related to phenology and vigor being were better predicted. Three spectral regions were consistently identified as contributing to predictions and to differences between scion/rootstock combinations. Using data from these regions yielded predictive models as accurate as those built with the entire spectral range, underlining that NIRS capture useful information related to the combination rootstock/scion which opens prospects towards the possibility of using this methodology in a breeding context.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Marie-Gabrielle Harribey1, Jean-Pascal Tandonnet2, Marine Morel2, Virginie Bouckenooghe3,4, Elisa Marguerit2, Vincent Segura4,5, Nathalie Ollat2*

1 UMR BIOGECO, Univ. Bordeaux, INRAE, CIRAD, 33 Cestas, France
2 EGFV, Univ.Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
3 IFV, 30240, Le Grau du Roi, France
4 UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
5 UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France

Contact the author*

Keywords

NIRS, phenomic prediction, rootstock, scion/rootstock interaction, field phenotyping

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.

Viticultural practices: past, present and future

Practices in viticulture have greatly evolved in the last five decades. There were three objectives: improvement in the quality of the products, reduction in the production costs through mechanization