terclim by ICS banner
IVES 9 IVES Conference Series 9 Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Abstract

Developing rootstocks adapted to environmental constraints constitutes a key lever for grapevine adaptation to climate change. In this context, Near Infrared Spectroscopy (NIRS) could be used as a high-throughput phenotyping technique to simplify the study of rootstocks in grafted situations. This study is an exploratory analysis to evaluate the potential of NIRS acquired on grafted tissues to reveal rootstock effects as well as the plasticity of combinations of scion/rootstock to better characterize these interactions.
Through the study of 25 combinations (5 scions times 5 rootstocks) in a dedicated experimental vineyard, we showed that NIRS obtained from grafted tissues capture rootstock and scion/rootstock interaction signals, up to 20% of the total variance at specific wavelengths. Yet, the scion effect on the spectra remains dominant over the rootstock effect, which is also the case for agronomic traits. Using NIRS data on dried leaves, which were found to best capture the rootstock effect compared to measurements on wood or fresh leaves, spectral wavelengths specific to the rootstock effect could be identified.
Predictions at the vine level carried out on twenty-eight phenotypic traits showed that those related to phenology and vigor being were better predicted. Three spectral regions were consistently identified as contributing to predictions and to differences between scion/rootstock combinations. Using data from these regions yielded predictive models as accurate as those built with the entire spectral range, underlining that NIRS capture useful information related to the combination rootstock/scion which opens prospects towards the possibility of using this methodology in a breeding context.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Marie-Gabrielle Harribey1, Jean-Pascal Tandonnet2, Marine Morel2, Virginie Bouckenooghe3,4, Elisa Marguerit2, Vincent Segura4,5, Nathalie Ollat2*

1 UMR BIOGECO, Univ. Bordeaux, INRAE, CIRAD, 33 Cestas, France
2 EGFV, Univ.Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
3 IFV, 30240, Le Grau du Roi, France
4 UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
5 UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France

Contact the author*

Keywords

NIRS, phenomic prediction, rootstock, scion/rootstock interaction, field phenotyping

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Application of grape pomace and stem extracts on Vitis vinifera L. cv. Monastrell: Increased stilbene content of grapes and wines

Pomace and grape stems are the main solid organic waste from winery industries, resulting from the pressing and/or fermentation processes it is generated in large amounts in many parts of the world

A mechanistic investigation of H/D scrambling processes in flavonoids

Several classes of flavonoids, such as anthocyanins, flavonols, flavanols and flavones, undergo a slow H/D exchange on aromatic ring A, leading to full deuteration at positions C(6) and C(8). Within the flavanol class, H-C(6) and H-C(8) of catechin and epicatechin are slowly exchanged in D2O to the corresponding deuterated analogues; even quercetin, a relevant flavonol representative, shows the same behaviour in a D2O/DMSOd6 1:1 solution. Detailed kinetic measurements of these H/D scrambling processes are here reported by exploiting the time-dependent changes of their peak areas in the 1H-NMR spectra taken at different temperatures. A unifying reaction mechanism is also proposed based on our detailed kinetic observations, even taking into account pH and solvent effects. Molecular modelling and QM calculations were also carried out to shed more light on several molecular details of the proposed mechanism.

Brettanomyces bruxellensis, born to live

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

Spur-pruning cordon for ‘Barbera’ vines in Piedmont

The traditional pruning system in Piedmont (North-West Italy) is the Guyot system; it requires trained personnel, difficult to find, and it does not permit the mechanization of winter pruning, thus it is very expensive. An alternative technique that could allow the reduction of the vineyard management costs could be the spur-pruning which is simpler to perform and fully mechanized.

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).