terclim by ICS banner
IVES 9 IVES Conference Series 9 VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

Abstract

The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a key floral activator that coordinates external and internal stimuli to ensure timely flowering. During early stages of flower formation, SOC1 represses floral organ identity genes such as AGAMOUS (AG) to prevent premature organ differentiation. In addition to floral organ specification, AG has been shown to regulate fleshy fruit expansion and ripening and, as such, is an important contributor to fruit quality traits. Currently, little is known about the function and gene regulatory network of the grapevine homologs VviSOC1a and VviAG1. As such, the aim of this study was to functionally characterise both genes by overexpressing them in tomato and performing phenotypic and gene expression studies. A dual luciferase (DL) assay involving putative target gene promoters was also conducted. Overexpression of VviSOC1a led to the development of leaf-like sepals, petals with increased chlorophyll content and plant sterility phenotypes. VviAG1-OE lines displayed hastened floral initiation, stamenoid petals, dwarfed fruit, as well as forming fleshy fruit sepals which gave the appearance of ripened pericarp tissue. The observed floral phenotypes were, in part, supported by the modulation of genes required for floral organ specification in tomato. VviSOC1a and VviAG1 displayed opposite expression trends, while also repressing each other’s expression in the DL assay. Collectively, the findings of this study supported a role for VviSOC1a in regulating floral organ specification, through the repression of the stamen and carpel identity gene VviAG1. An additional function for VviAG1 in berry development and ripening is also suggested.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Jenna Jolliffe1,2, Claudio Moser2, Stefania Pilati2 and Justin Lashbrooke3*

1South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
2Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
3Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa

Contact the author*

Keywords

SOC1, AG1, Flower, transcription factor, development

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The adaptative capacity of a viticultural area (Valle Telesina, Southern Italy) to climate changes

The viticulture aiming at the production of high quality wine is very important for the landscape conservation, because it allows to combine high farmer income with soil conservation

Viñedos de la D.O. Ribeira Sacra: heterogeneidad varietal y sanitaria

La D.O. Ribeira Sacra (Galicia, N.O. de España) se distribuye a lo largo de las riberas de los ríos Miño y Sil. Su característica mas destacada son las fuertes pendientes. Desde 1990 se estudia el estado

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).

How a microscopic yeast makes a big difference – how geographic limitations of yeast populations can determine the regional aroma of wine

Aim: Microbial biogeography contributes to regional distinctiveness of agricultural products and is important to determine for quality and marketing of wine products. We evaluated the microbial influence on wine characteristics by considering the microbial diversity of soil, plant, grapes, must and wine in grapegrowing regions across Victoria, Australia. 

Les activités peroxidasiques du raisin de quelques cépages de Roumanie

Les enzymes d’oxydation (polyphénoloxydase, peroxydase) des raisins sont d’origine génétique dépendantes des facteurs climatiques et agrotechniques (Sapis et al, 1983). Dans le processus technologique de l’obtention du moût de raisins, ces enzymes catalysent l’oxydation de certains composés phénoliques naturellement présents dans le raisin, produisant ainsi des modifications indésirables de la couleur et de l’arôme du vin.