terclim by ICS banner
IVES 9 IVES Conference Series 9 VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

Abstract

The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a key floral activator that coordinates external and internal stimuli to ensure timely flowering. During early stages of flower formation, SOC1 represses floral organ identity genes such as AGAMOUS (AG) to prevent premature organ differentiation. In addition to floral organ specification, AG has been shown to regulate fleshy fruit expansion and ripening and, as such, is an important contributor to fruit quality traits. Currently, little is known about the function and gene regulatory network of the grapevine homologs VviSOC1a and VviAG1. As such, the aim of this study was to functionally characterise both genes by overexpressing them in tomato and performing phenotypic and gene expression studies. A dual luciferase (DL) assay involving putative target gene promoters was also conducted. Overexpression of VviSOC1a led to the development of leaf-like sepals, petals with increased chlorophyll content and plant sterility phenotypes. VviAG1-OE lines displayed hastened floral initiation, stamenoid petals, dwarfed fruit, as well as forming fleshy fruit sepals which gave the appearance of ripened pericarp tissue. The observed floral phenotypes were, in part, supported by the modulation of genes required for floral organ specification in tomato. VviSOC1a and VviAG1 displayed opposite expression trends, while also repressing each other’s expression in the DL assay. Collectively, the findings of this study supported a role for VviSOC1a in regulating floral organ specification, through the repression of the stamen and carpel identity gene VviAG1. An additional function for VviAG1 in berry development and ripening is also suggested.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Jenna Jolliffe1,2, Claudio Moser2, Stefania Pilati2 and Justin Lashbrooke3*

1South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
2Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
3Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa

Contact the author*

Keywords

SOC1, AG1, Flower, transcription factor, development

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

New insights of translocation of smoke-related volatile phenols in vivo grapevines

The increasing frequency of wildfires in grape-growing regions is seen as a significant risk for the grape and wine industry.

Wine archeochemistry: a multiplatform analytical approach to chemically profile shipwreck wines

The Cape of Storms (also known as Cape of Good Hope) is renowned for harbouring a multitude of shipwrecks due to the inherent treacherous coastline and blistering storms.

Selection of beneficial endophytes from Sicilian grapevine germplasm 

The recent expansion of arid areas due to climate change is putting grapevine and the other traditional productions at risk in all Mediterranean countries with a limited availability of fundamental resources such as water. It is possible to improve the resilience of vineyards by developing sustainable agricultural practices based on biological and natural resources such as endophytic microorganisms that colonize inner plant tissues, and which can potentially increase the tolerance to abiotic stresses. A selection of grapevine endophytes was conducted from 2021 to 2023 as part of the PRIMA project PROSIT.

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.

Development of an analytical method for the quantification of compounds responsible for the green character of wines: influence of ripeness on their levels

Red wines can sometimes exhibit undesirable green, herbaceous, and vegetative aromas, negatively impacting their sensory profile and consumer acceptance.