terclim by ICS banner
IVES 9 IVES Conference Series 9 VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

Abstract

The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a key floral activator that coordinates external and internal stimuli to ensure timely flowering. During early stages of flower formation, SOC1 represses floral organ identity genes such as AGAMOUS (AG) to prevent premature organ differentiation. In addition to floral organ specification, AG has been shown to regulate fleshy fruit expansion and ripening and, as such, is an important contributor to fruit quality traits. Currently, little is known about the function and gene regulatory network of the grapevine homologs VviSOC1a and VviAG1. As such, the aim of this study was to functionally characterise both genes by overexpressing them in tomato and performing phenotypic and gene expression studies. A dual luciferase (DL) assay involving putative target gene promoters was also conducted. Overexpression of VviSOC1a led to the development of leaf-like sepals, petals with increased chlorophyll content and plant sterility phenotypes. VviAG1-OE lines displayed hastened floral initiation, stamenoid petals, dwarfed fruit, as well as forming fleshy fruit sepals which gave the appearance of ripened pericarp tissue. The observed floral phenotypes were, in part, supported by the modulation of genes required for floral organ specification in tomato. VviSOC1a and VviAG1 displayed opposite expression trends, while also repressing each other’s expression in the DL assay. Collectively, the findings of this study supported a role for VviSOC1a in regulating floral organ specification, through the repression of the stamen and carpel identity gene VviAG1. An additional function for VviAG1 in berry development and ripening is also suggested.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Jenna Jolliffe1,2, Claudio Moser2, Stefania Pilati2 and Justin Lashbrooke3*

1South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
2Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
3Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa

Contact the author*

Keywords

SOC1, AG1, Flower, transcription factor, development

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Validation of a high-throughput method for the quantification of volatile carbonyl compounds in wine and its use in accelerated ageing experiments

the aim of this study was the optimization and validation of a robust and comprehensive method for the determination of volatile carbonyl compounds (VCCs) in wines

Biosynthetic evolution of galloilated polyphenols in Tannat grapes during ripening, potential applications of grape thinning

Galloylated flavan-3-ols are a class of polyphenolic compounds present in various plants, including grape seeds. These compounds are formed through the condensation of flavan-3-ols, such as catechins, although the precise mechanism by which gallic acid is incorporated into the molecule remains unclear.

Additives od aids? Evaluation of aroma compounds release from oenological tannins of different botanical origins.

Oenological tannins are products extracted from various botanical sources, such as mimosa,
acacia, oak gall, quebracho, chestnut and tara. The polyphenolic component is obtained through a solid-liquid extraction also using specific solvents, then removed by evaporation or freeze-drying. Tannins are employed in two phases of winemaking, during the pre-fermentative phase or during fining with different purposes such as modulate antioxidant activity, colour stabilization, bacteriostatic activity, protein stabilization and modulation of sensory properties. To date, the current regulatory framework is not very clear. In fact, the Codex Alimentarius classifies commercial tannins as “food additives” but also as
“processing aids”. The main distinction is that “additives” have a technological function in the final food, whereas “processing aids” do not. In this sense, oenological tannins, despite the technological treatments, could contain aromatic compounds of the botanical species they belong to and release them to the wine.

Carbon sequestration in vineyard soils: biomass utilization in a climate change scenario–the SUSTAIN project

The SUSTAIN project aims at assessing the soil organic carbon (SOC) stock and vulnerability in vineyard soils under a climate change scenario.

Quantification of newly identified C8 aroma compounds in musts and wines as an analytical tool for the early detection of Fresh Mushroom Off-Flavor

The Fresh Mushroom Off-Flavor (FMOff) is a concerning undesirable aroma in wine specific of certain vintages, characterized by a typical button mushroom aroma. The appearance of this off-flavor is linked to the presence of certain fungus on the grape [1-3].