terclim by ICS banner
IVES 9 IVES Conference Series 9 VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

Abstract

The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a key floral activator that coordinates external and internal stimuli to ensure timely flowering. During early stages of flower formation, SOC1 represses floral organ identity genes such as AGAMOUS (AG) to prevent premature organ differentiation. In addition to floral organ specification, AG has been shown to regulate fleshy fruit expansion and ripening and, as such, is an important contributor to fruit quality traits. Currently, little is known about the function and gene regulatory network of the grapevine homologs VviSOC1a and VviAG1. As such, the aim of this study was to functionally characterise both genes by overexpressing them in tomato and performing phenotypic and gene expression studies. A dual luciferase (DL) assay involving putative target gene promoters was also conducted. Overexpression of VviSOC1a led to the development of leaf-like sepals, petals with increased chlorophyll content and plant sterility phenotypes. VviAG1-OE lines displayed hastened floral initiation, stamenoid petals, dwarfed fruit, as well as forming fleshy fruit sepals which gave the appearance of ripened pericarp tissue. The observed floral phenotypes were, in part, supported by the modulation of genes required for floral organ specification in tomato. VviSOC1a and VviAG1 displayed opposite expression trends, while also repressing each other’s expression in the DL assay. Collectively, the findings of this study supported a role for VviSOC1a in regulating floral organ specification, through the repression of the stamen and carpel identity gene VviAG1. An additional function for VviAG1 in berry development and ripening is also suggested.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Jenna Jolliffe1,2, Claudio Moser2, Stefania Pilati2 and Justin Lashbrooke3*

1South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
2Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
3Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa

Contact the author*

Keywords

SOC1, AG1, Flower, transcription factor, development

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found.

High-resolution aerial thermography for water stress estimation in grapevines

Aerial thermography has emerged as a promising tool for water stress detection in grapevines, but there are still challenges associated with this technology, particularly concerning the methodology employed to extract reliable canopy temperature values. This consideration is relevant especially in vertically trained vineyards, due to the presence of multiple surfaces which are captured by drone thermal cameras with high-resolution. To test the technology and the data analysis required, a field study was conducted during the 2022-2023 season in a model vineyard with multiple scions-rootstock combinations trained on a vertical shoot-positioning (VSP) system. Additionally, three irrigation regimes were implemented to introduce variability in water stress levels.

In line monitoring of red wine fermentations using ir spectrospcopy

There has been a shift in modern industry to implement non-destructive and non-invasive process monitoring techniques (Helmdach et al., 2013).

Ultrasound and microwave techniques to accelerate the release of oak wood compounds in wine aging process

Aging process is an essential stage in the improvement of wine quality. This process is usually performed by contact with oak wood whose compounds are released and transferred to wine, acquiring typical aging bouquet. Although the use of oak chips is a practice generally accepted as alternative to barrels to shorten aging process, the application of emerging technologies is being unfolded to accelerate this stage.

Un modello di lavoro per lo studio dell’ up-grading tecnologico del vigneto nel Veneto Occidentale. Connettività degli attori e mappatura su dati avepa integrati con rilevamento speditivo e qualitativo

Il lavoro si prefigge di esaminare la propensione alla modernizzazione della viticoltura del Veneto Occidentale, letto attraverso la diffusione di forme di allevamento a sviluppo contenuto.