Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Influence on grape aroma of nitrogen compounds and elicitors foliar applications in vineyards

Influence on grape aroma of nitrogen compounds and elicitors foliar applications in vineyards

Abstract

AIM: The grape volatile compounds determine the wine quality and typicity [1]. Thus, looking for agronomic tools to improve its composition it is of great interest in the sector [2]. The aim of this work was to study the effects of several foliar applications in Garnacha, Tempranillo, and Graciano grapevines in order to enhance their grape volatile composition.

METHODS: The field trial involved the application of two nitrogen compounds, urea (Ur) and phenylalanine (Phe), and two elicitors, methyl jasmonate (MeJ) and a yeast extract (YE), as well as a control (water) in vines of these grape varieties. All treatments were carried out at veraison and one week later. The grapes were collected at their optimal technological maturity. The analysis of grape volatile compounds was carried out by HS-SPME-GC-MS [3].

RESULTS: For Garnacha, most terpenes, and C13 norisoprenoids increased their grape content by applying Ur and Phe, and especially MeJ; there is a large increase in 2-phenylethanol and 2-phenylethanal with the Phe application. For Tempranillo, treatments with Ur and MeJ improved the synthesis of most terpenoids, while the application of Phe was negative for the content of C13 norisoprenoids; and benzenoid compounds increased, in general, with all foliar treatments. For Graciano, a trend to decrease the terpenoids content in grapes with the treatments was observed, especially with Ur and YE; Phe application increased C13 norisoprenoids content, while the application of YE significantly decreased them; this treatment decreased benzyl alcohol and increased 2-phenylethanol contents in grapes.

CONCLUSIONS:

The effect of foliar applications on volatile composition was dependent on the grape variety. The most positive treatments were: Phe and MeJ for Garnacha, Ur and MeJ for Tempranillo, and Phe for Graciano.

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sandra Marín-San Román, Carretera De Burgos,  Sáenz De Urturi P. Rubio-Bretón E. Baroja E.P. Pérez-Álvarez T. Garde-Cerdán* 

Instituto De Ciencias De La Vid Y Del Vino (Csic, Universidad De La Rioja, Gobierno De La Rioja). Carretera De Burgos, Km. 6. 26007 Logroño, Spain  *

Contact the author

Keywords

volatile compounds; grape; must; hs-spme-gc-ms; aroma; foliar application; elicitors; nitrogen compounds

Citation

Related articles…

A fine-scale approach to map bioclimatic indices using and comparing dynamical and geostatistical methods

Climate, especially temperature, plays a major role in grapevine development. Several bioclimaticindices have been created to relate temperature to grapevine phenology (e.g. Winkler Index, Huglin Index, Grapevine Flowering Véraison model [GFV]).

Impact of genotypic variability on grapevine architecture and light interception: A functional-structural modelling approach

Aerial architecture plays a key role in plant functioning as it affects light interception and microclimate. In grapevine, this architecture is primarily shaped by winter pruning and further adjusted through practices such as leaf thinning and topping during the growth cycle.

Impact of mycorrhizal inoculation of ‘Monastrell’ grapevines grafted onto different conventional vs. newly breed rootstocks 

Grafting Vitis vinifera L. (wine traditional cultivars) onto North American grapevine species or hybrids is a common practice in viticulture given their tolerance against phylloxera (Daktulosphaira vitifoliae). However, rootstock genetic background affects the response of grapevines to environmental stresses and their ability for establishing a symbiotic relationship with the microbial communities, and more specifically with arbuscular mycorrhizal fungi (AMF).
The aim of this study was to evaluate Monastrell variety (clone ENTAV 369) grafted onto three rootstocks (140Ru, 110R and RG8) characterized by a different genetic background, in combination with AMF inoculation (Rhizophagus irregularis) vs. a non-inoculated control with regards to vegetative growth, leaf gas exchange parameters, and mycorrhization.

Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Climate change critically challenges viticulture. Among other threats, extreme and increasingly frequent heatwaves cause irreversible burns on leaves and bunches. A series of observations and experiments was conducted to better understand how leaf burns originate and whether genetics or management practices can mitigate them. In 2019, a panel of 279 potted cultivars of Vitis vinifera L. grown outdoors suffered a heat peak and a genetic origin of leaf burn variability was demonstrated. To deeper explore this variability, fourteen cultivars were selected for their contrasting responses to high temperatures, and detached leaves were submitted to a controlled increase in temperature up to 50 °C in a growth chamber.

Research on the origin and the side effects of chitosan stabilizing properties in wine

Fungal chitosan is a polysaccharide made up of glucosamine and N-acetyl-glucosamine and derived from chitin-glucan of Aspergillus niger or Agaricus bisporus. Fungal chitosan has been authorized as an antiseptic agent in wine since 2009 (OIV) and in organic wine in 2018. At the maximum dose of 10g/hl, it was shown to eliminate Brettanomyces bruxellensis, the main spoilage agent in red wines. Fungal chitosan is highly renewable, biocompatible (ADI equivalent to sucrose) and non-allergenic. However, winemakers often prefer to use sulfites (SO2), though sulfites are classified as priority food allergens, than chitosan. Indeed, many conflicting reports exist regarding its efficiency and its side effects towards beneficial wine microorganisms or wine taste. These contradictions could be explained by the heterogeneity of the fungal chitosan lots traded, the diversity of the wines (chemical composition, winemaking process), but also, by the recently highlighted huge genetic diversity prevailing in wine microbial species.