Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Influence on grape aroma of nitrogen compounds and elicitors foliar applications in vineyards

Influence on grape aroma of nitrogen compounds and elicitors foliar applications in vineyards

Abstract

AIM: The grape volatile compounds determine the wine quality and typicity [1]. Thus, looking for agronomic tools to improve its composition it is of great interest in the sector [2]. The aim of this work was to study the effects of several foliar applications in Garnacha, Tempranillo, and Graciano grapevines in order to enhance their grape volatile composition.

METHODS: The field trial involved the application of two nitrogen compounds, urea (Ur) and phenylalanine (Phe), and two elicitors, methyl jasmonate (MeJ) and a yeast extract (YE), as well as a control (water) in vines of these grape varieties. All treatments were carried out at veraison and one week later. The grapes were collected at their optimal technological maturity. The analysis of grape volatile compounds was carried out by HS-SPME-GC-MS [3].

RESULTS: For Garnacha, most terpenes, and C13 norisoprenoids increased their grape content by applying Ur and Phe, and especially MeJ; there is a large increase in 2-phenylethanol and 2-phenylethanal with the Phe application. For Tempranillo, treatments with Ur and MeJ improved the synthesis of most terpenoids, while the application of Phe was negative for the content of C13 norisoprenoids; and benzenoid compounds increased, in general, with all foliar treatments. For Graciano, a trend to decrease the terpenoids content in grapes with the treatments was observed, especially with Ur and YE; Phe application increased C13 norisoprenoids content, while the application of YE significantly decreased them; this treatment decreased benzyl alcohol and increased 2-phenylethanol contents in grapes.

CONCLUSIONS:

The effect of foliar applications on volatile composition was dependent on the grape variety. The most positive treatments were: Phe and MeJ for Garnacha, Ur and MeJ for Tempranillo, and Phe for Graciano.

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sandra Marín-San Román, Carretera De Burgos,  Sáenz De Urturi P. Rubio-Bretón E. Baroja E.P. Pérez-Álvarez T. Garde-Cerdán* 

Instituto De Ciencias De La Vid Y Del Vino (Csic, Universidad De La Rioja, Gobierno De La Rioja). Carretera De Burgos, Km. 6. 26007 Logroño, Spain  *

Contact the author

Keywords

volatile compounds; grape; must; hs-spme-gc-ms; aroma; foliar application; elicitors; nitrogen compounds

Citation

Related articles…

Modelling leaf water potential from physiological and meteorological variables – A machine learning approach

Viticulture is a key economic sector in the mediterranean region. However, climate change is affecting global viticulture, increasing the frequency of heatwaves and drought events.

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Since the arrival of Phyloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.

The effects of canopy side on the chemical composition of merlot, Cabernet-Sauvignon, and Carmenère (Vitis vinifera L.) Grapes during ripening

Carmenère fruit during ripening of a Vertical shoot positioning, VSP, trained experimental vineyard with north-south row orientation.

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.