Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Influence on grape aroma of nitrogen compounds and elicitors foliar applications in vineyards

Influence on grape aroma of nitrogen compounds and elicitors foliar applications in vineyards

Abstract

AIM: The grape volatile compounds determine the wine quality and typicity [1]. Thus, looking for agronomic tools to improve its composition it is of great interest in the sector [2]. The aim of this work was to study the effects of several foliar applications in Garnacha, Tempranillo, and Graciano grapevines in order to enhance their grape volatile composition.

METHODS: The field trial involved the application of two nitrogen compounds, urea (Ur) and phenylalanine (Phe), and two elicitors, methyl jasmonate (MeJ) and a yeast extract (YE), as well as a control (water) in vines of these grape varieties. All treatments were carried out at veraison and one week later. The grapes were collected at their optimal technological maturity. The analysis of grape volatile compounds was carried out by HS-SPME-GC-MS [3].

RESULTS: For Garnacha, most terpenes, and C13 norisoprenoids increased their grape content by applying Ur and Phe, and especially MeJ; there is a large increase in 2-phenylethanol and 2-phenylethanal with the Phe application. For Tempranillo, treatments with Ur and MeJ improved the synthesis of most terpenoids, while the application of Phe was negative for the content of C13 norisoprenoids; and benzenoid compounds increased, in general, with all foliar treatments. For Graciano, a trend to decrease the terpenoids content in grapes with the treatments was observed, especially with Ur and YE; Phe application increased C13 norisoprenoids content, while the application of YE significantly decreased them; this treatment decreased benzyl alcohol and increased 2-phenylethanol contents in grapes.

CONCLUSIONS:

The effect of foliar applications on volatile composition was dependent on the grape variety. The most positive treatments were: Phe and MeJ for Garnacha, Ur and MeJ for Tempranillo, and Phe for Graciano.

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sandra Marín-San Román, Carretera De Burgos,  Sáenz De Urturi P. Rubio-Bretón E. Baroja E.P. Pérez-Álvarez T. Garde-Cerdán* 

Instituto De Ciencias De La Vid Y Del Vino (Csic, Universidad De La Rioja, Gobierno De La Rioja). Carretera De Burgos, Km. 6. 26007 Logroño, Spain  *

Contact the author

Keywords

volatile compounds; grape; must; hs-spme-gc-ms; aroma; foliar application; elicitors; nitrogen compounds

Citation

Related articles…

Managing changes in taste: lessons from champagne in britain 1800-1914

This paper focuses on how taste in wine (and other foods) changes and the implications of this process
for producers and merchants.
It draws primarily on the changing taste of and taste for champagne in Britain in the 19th century. Between 1850 and 1880 champagne went from a dosage level of around 20% (20 grams sugar / litre) to 0%. Champagne became the ‘dinner wine of the elite – drunk with roast meat and savoury dishes.
Contemporaries accepted that while most people could distinguish the taste of good champagne from that of bad, very few could distinguish very good from good.

Unveiling the bioactive potential of aglianco grape pomace: oleanolic acid as a promising natural product

The winemaking industry generates a substantial amount of byproducts, including grape pomace, which is often discarded as waste. However, this seemingly useless material holds a wealth of bioactive compounds with potential health benefits. Recognizing the value of circular economy principles, this study delves into the comprehensive chemical analysis of aglianco grape pomace, aiming to transform this byproduct into a valuable resource.

Rootstocks: how the dark side of the vine can enlight the future?

Global challenges, including adaptation to climate change, decrease of the environmental impacts and maintenance of the economical sustainability shape the future of viticulture.

The capacity of spectrofluorometric fingerprints to discern changes of wine composition: applications in classifying wine additives and tracking red wine maturation and ageing

Fluorescence spectroscopy combined with chemometrics has shown advantages in wine analysis due to being rapid, sensitive, and selective to fluorescent molecules. Especially due to the abundant phenolic compounds [1], the molecular fingerprints afforded by fluorescence spectroscopy can potentially be used to discern and track the change of wine composition, with two innovative investigations having been implemented.

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.