Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Preliminary evaluation of agronomic and enological properties of preselected grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

Preliminary evaluation of agronomic and enological properties of preselected grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

Abstract

AIM. Cultivation of a few number of clones is causing the loss of vineyard biodiversity, resulting in the disappearance of biotypes that could be of interest to face future challenges, such as climate change or appearance of new pests. This topic is so relevant that OIV dedicated a recent resolution (OIV, 2019) to the recovery and conservation of intra-varietal diversity. In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, which origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results obtained from the agronomic characterization of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones.

METHODS. Candidate clones (30 cv. Tempranillo; 13 cv. Graciano) were planted in 2016 in an experimental vineyard in La Rioja (Spain). A complete randomized block design was set up with four replicates of 10 plants. In 2020, clones were evaluated according to their phenological data (time of bud burst, full bloom, veraison and physiological ripeness). At harvest, yield parameters were determined: weight of 100 berries (g), cluster weight (g), fertility (clusters/shoot), yield (kg/plant) and cluster compactness (OIV descriptor Nº204). Must chemical composition was determined by analyzing ºBrix, pH, total acidity (g/l), tartaric acid (g/l), malic acid (g/l) and potassium (mg/l). The following vegetative growth parameters were determined: average shoot weight (g), pruning fresh weight (kg/plant) and Ravaz Index. In addition, clones were vinified and wine physical-chemical parameters, total phenolic index (TPI), anthocyanin content (mg/l) and color intensity were determined.

RESULTS. Significant differences between clones were found for each parameter. Results confirmed therefore the huge wide genetic variability existing between the clones regarding their agronomic behaviour. Moreover, clones also showed great differences regarding wine composition. Nonetheless, data collection needs to continue for at least 3 vintages in order to fulfill their caracterization independently from climatic conditions.

CONCLUSIONS

Clones have shown big differences in many of the parameters analyzed. The diversity found is a potential tool for the selection of those candidates with the best properties and constitutes the best guarantee of adaptation of these varieties to future objectives and environmental conditions.

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Javier Portu , Gobierno de La Rioja,  Finca La Grajera, Elisa BAROJA, Juana MARTÍNEZ.  Luis RIVACOBA. Enrique GARCÍA-ESCUDERO, 

Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, Universidad de La Rioja, CSIC). Ctra. de Burgos Km. 6, Logroño, La Rioja 26007, Spain,

Contact the author

Keywords

intra-varietal diversity, climate change, clonal selection, genetic erosion

Citation

Related articles…

Sensitivity of vis‐nir spectral indices to detect nitrogen deficiency and canopy function in cv. Barbera (Vitis vinifera L.) Grapevines

Precision nutrient management in viticulture can be addressed on the basis of a spatial characterization of within‐vineyard vine

Molecular characterization of wines nucleophilic potential by ultra-performance liquid chromatography high resolution mass spectrometry

The knowledge about the molecular fraction associated to white wines oxidative stability is still poorly understood.

Viticultural potential assessment and its spatial delineation analysis in Goriška Brda viticultural area

Viticultural potential has a complex conditioning, determined by relief,
soil, climate and lithology. Delineation of viticultural potential from vineyard areas is essential for the purpose to collect the necessary data for viticultural zoning. Using this data, we can achieve greater yield quality, which is the most important criteria in viticulture. The main purpose of this research is
characterizing of viticultural potential and zoning of homogeneous viticultural zones in Goriška Brda region by assessing the suitability of defined ecological factors.

Mapping and tracking canopy size with VitiCanopy

Understanding vineyard variability to target management strategies, apply inputs efficiently and deliver consistent grape quality to the winery is essential. However, despite inherent vineyard variability, the majority are managed as if they are uniform. VitiCanopy is a simple, grower-friendly tool for precision/digital viticulture that allows users to collect and interpret objective spatial information about vineyard performance. After four years of field and market research, an upgraded VitiCanopy has been created to achieve a more streamlined, technology-assisted vine monitoring tool that provides users with a set of superior new features, which could significantly improve the way users monitor their grapevines. These new features include:
• New user interface
• User authentication
• Batch analysis of multiple images
• Ease the learning curve through enhanced help features
• Reporting via the creation of colour maps that will allow users to assess the spatial differences in canopies within a vineyard.
Use-case examples are presented to demonstrate the quantification and mapping of vineyard variability through objective canopy measurements, ground-truthing of remotely sensed measurements, monitoring of crop conditions, implementation of disease and water management decisions as well as creating a history of each site to forecast quality. This intelligent tool allows users to manage grapevines and make informed management choices to achieve the desired production targets and remain profitable.

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.