Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Preliminary evaluation of agronomic and enological properties of preselected grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

Preliminary evaluation of agronomic and enological properties of preselected grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

Abstract

AIM. Cultivation of a few number of clones is causing the loss of vineyard biodiversity, resulting in the disappearance of biotypes that could be of interest to face future challenges, such as climate change or appearance of new pests. This topic is so relevant that OIV dedicated a recent resolution (OIV, 2019) to the recovery and conservation of intra-varietal diversity. In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, which origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results obtained from the agronomic characterization of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones.

METHODS. Candidate clones (30 cv. Tempranillo; 13 cv. Graciano) were planted in 2016 in an experimental vineyard in La Rioja (Spain). A complete randomized block design was set up with four replicates of 10 plants. In 2020, clones were evaluated according to their phenological data (time of bud burst, full bloom, veraison and physiological ripeness). At harvest, yield parameters were determined: weight of 100 berries (g), cluster weight (g), fertility (clusters/shoot), yield (kg/plant) and cluster compactness (OIV descriptor Nº204). Must chemical composition was determined by analyzing ºBrix, pH, total acidity (g/l), tartaric acid (g/l), malic acid (g/l) and potassium (mg/l). The following vegetative growth parameters were determined: average shoot weight (g), pruning fresh weight (kg/plant) and Ravaz Index. In addition, clones were vinified and wine physical-chemical parameters, total phenolic index (TPI), anthocyanin content (mg/l) and color intensity were determined.

RESULTS. Significant differences between clones were found for each parameter. Results confirmed therefore the huge wide genetic variability existing between the clones regarding their agronomic behaviour. Moreover, clones also showed great differences regarding wine composition. Nonetheless, data collection needs to continue for at least 3 vintages in order to fulfill their caracterization independently from climatic conditions.

CONCLUSIONS

Clones have shown big differences in many of the parameters analyzed. The diversity found is a potential tool for the selection of those candidates with the best properties and constitutes the best guarantee of adaptation of these varieties to future objectives and environmental conditions.

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Javier Portu , Gobierno de La Rioja,  Finca La Grajera, Elisa BAROJA, Juana MARTÍNEZ.  Luis RIVACOBA. Enrique GARCÍA-ESCUDERO, 

Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, Universidad de La Rioja, CSIC). Ctra. de Burgos Km. 6, Logroño, La Rioja 26007, Spain,

Contact the author

Keywords

intra-varietal diversity, climate change, clonal selection, genetic erosion

Citation

Related articles…

Underpinning terroir with data: rethinking the zoning paradigm

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used. Likewise, the chemical and sensory analysis of wines draws on multivariate statistics; the efficient winery intake of grapes, subsequent production of wines and their delivery to markets relies on logistics; whilst the sales and marketing of wines is increasingly driven by artificial intelligence linked to the recorded purchasing behaviour of consumers. In brief, there is data everywhere!

Opinions will vary on whether these developments are a good thing. Those concerned with the ‘mystique’ of wine, or the historical aspects of terroir and its preservation, may find them confronting. In contrast, they offer an opportunity to those interested in the biophysical elements of terroir, and efforts aimed at better understanding how these impact on vineyard performance and the sensory attributes of resultant wines. At the previous Terroir Congress, we demonstrated the potential of analytical methods used at the within-vineyard scale in the development of Precision Viticulture, in contributing to a quantitative understanding of regional terroir. For this conference, we take this approach forward with examples from contrasting locations in both the northern and southern hemispheres. We show how, by focussing on the vineyards within winegrowing regions, as opposed to all of the land within those regions, we might move towards a more robust terroir zoning than one derived from a mixture of history, thematic mapping, heuristics and the whims of marketers. Aside from providing improved understanding by underpinning terroir with data, such methods should also promote improved management of the entire wine value chain.

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.

Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Water status impact in viticulture has been widely explored, as it strongly affects grapevine physiology and grape chemical composition. It is considered as a key component of vitivinicultural terroir. Most of the studies concerning grapevine water status have focused on either physiological traits, or berry compounds, or traits involved in wine quality. Here, the response of grapevine to water availability during the ripening period is assessed through non-targeted metabolomics analysis of grape berries by ultra-high resolution mass spectrometry. The grapevine water status has been assessed during 2 consecutive years (2019 & 2020), through carbon isotope discrimination on juices from berries collected at maturity (21.5 brix approx.) for 2 Vitis vinifera cv. Pinot noir (PN) and Chardonnay (CH). A total of 220 grape juices were collected from 5 countries worldwide (Italy; Argentina; France; Germany; Portugal). Measured δ13C (‰) varied from -28.73 to -22.6 for PN, and from -28.79 to -21.67 for CH. These results also clearly revealed higher water stress for the 2020 vintage. The same grape juices have been analysed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Liquid Chromatography coupled to Mass Spectrometry (LC-qTOF-MS), leading to the detection of up to 4500 CHONS containing elemental compositions, and thus likely tens of thousands of individual compounds, which include fatty acids, organic acids, peptides, phenolics, also with high levels of glycosylation. Multivariate statistical analysis revealed that up to 160 elemental compositions, covering the whole range of detected masses (100 –1000 m/z), were significantly correlated to the observed gradients of water status. Examples of chemical markers, which are representative of these complex fingerprints, include various derivatives of the known abscisic acid (ABA), such as phaesic acid or abscisic acid glucose ester, which are significantly correlated with higher water stress, regardless of the variety. Cultivar-specific behaviours could also be identified from these fingerprints. Our results provide an unprecedented representation of the metabolic diversity, which is involved in the water status regulation at the grape level, and which could contribute to a better knowledge of the grapevine mitigation strategy in a climate change context.

Evolution of astringency during the ripening of red grapes through the tribological astringency index

The phenolic composition of red grapes is one of the most important quality parameters.

Can fungoid chitosan help to produce sulfite-free wines? Ten years of investigation on its antioxidant properties

Chitosan is a natural polymeric saccharide admitted by EU since 2011 for must and wine clarification, the reduction of some contaminants (e.g. ochratoxin A) and to prevent the development of wine microbialspoilage due to lactic acid bacteria or Dekkera/Brettanomyces yeasts.