Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

Abstract

AIM: The increase in the temperature and the more severe water stress conditions, trends observed in recent years as a consequence of climate change, are leading a mismatch between the technological and phenolic maturity of grapes [1]. As a strategy to face this situation, the use of apatite (Ap) nanoparticles as nano-transporters of the elicitor, methyl jasmonate (Ap-MeJ), is proposed. Elicitors are compounds that, when applied to plants, activate their defense mechanisms, increasing the synthesis of secondary metabolites, mainly phenolic compounds [2, 3]. To date, methyl jasmonate (MeJ) has been used conventionally, but its “nano” application could improve its penetration into the plant, releasing it slowly, which would allow a reduction in the dose to be applied. Therefore, the objective of this work was to study the influence of foliar application of conventional MeJ and MeJ formulated in “nano” form on the composition of Tempranillo grapes during ripening.

METHODS: The experimental design was a randomized block design with three treatments, each in triplicate, with 10 vines per replicate. Foliar applications were carried out at veraison and 7 days later. In each application, 200 mL of solution was applied per plant, being the treatments: control (water), MeJ (10 mM) and Ap-MeJ (1 mM). Grape samples were taken at five points in time: one day before the first application (Fol1), one day before the second application (Fol2), fifteen days after the second application (Pre: pre-harvest), the day of harvest (Vend) and 15 days after harvest (Post: post-harvest). In each sample, the general parameters were determined using official methods [4]: ºBrix, pH, total acidity, glucose+fructose, malic acid, and total phenols.

RESULTS: The results obtained with the foliar application of MeJ as a tool to approximate the phenolic and technological maturity are promising. It has been observed that both, conventional MeJ and Ap-MeJ treatments, slightly reduced ºBrix of grapes and increased their phenolic content. Throughout ripening, the increase in phenolic compounds was mainly evident from pre-harvest to post-harvest, with a higher content in grapes treated with Ap-MeJ.

CONCLUSIONS:

The application of MeJ could be an appropriate technique to mitigate the negative effects of decoupling in grape ripening related to the climate change. Moreover, the use of Ap-MeJ allows to optimize its dosage, contributing to a sustainable and economically viable viticulture.

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Teresa Garde-Cerdán , Carretera De Burgos, Pérez-Álvarez, Baroja, Ramírez-Rodríguez,  Martínez-Vidaurre, Delgado-López P. Rubio-Bretón, Garde-Cerdán

Instituto De Ciencias De La Vid Y Del Vino (Csic, Universidad De La Rioja, Gobierno De La Rioja). Km. 6. 26007 Logroño, Spain,E.P.
Instituto De Ciencias De La Vid Y Del Vino E.
Instituto De Ciencias De La Vid Y Del Vino G.B. Universidad De Granada J.M.
Instituto De Ciencias De La Vid Y Del Vino J.M.
Instituto De Ciencias De La Vid Y Del Vino T.
Instituto De Ciencias De La Vid Y Del Vino

Contact the author

Keywords

Elicitors; nanotechnology; methyl jasmonate; foliar application; vineyard; grape composition; ripening; phenolic maturity; technological maturity; climate change

Citation

Related articles…

Changes in white wine composition after treatment with cationic exchange resin: impact on wine oxidation after 8 years of bottle storage

Samples from 3 wine types were treated with a cationic exchange resin (7 lots) and stored for 8 years (47 samples). Forty-seven parameters were determined, including (1) important substrates with impact in white wine oxidation and (2) markers of oxidation. From group 1, sugars, elements, phenolic compounds, α-dicarbonyls and SO2 and from group 2, browning (A420), acetaldehyde, alkanals, furanic compounds were quantified.

Investigation of VvDXS function and its effects on muscat flavor levels

In the present study the connection between the positional candidate gene VvDXS and muscat flavor was evaluated by investigating the expression profiles in the berries from a Muscat-type cultivar and a neutral cultivar and its nucleotide diversity of full ORF on grapevine accessions.

NAVIC–20 years of a lean management model for wine business R&D

Considering That Innovation Supports A Company’s Competitive Advantage And Drive Higher Profits (Dogru A. & Peyrette J., 2022), A Key Challenge Of Wine Companies Is Getting Practitioners To Understand That Innovation-Related Wine Research Increases The Likelihood Of Competitive Advantage, Bringing Financial Success. A Continued And Enhanced Investment In Research Is, Thus, A Prerequisite For Commercial Success In Today’s Globalized And Competitive Wine Industry (Høj P., Pretorius I.S., & Day R., 2003).

Soil humidity and early leaf water potential affected by water recharge before budbreak in cv. Tempranillo deficitary irrigated during the summer in the D. O. Ribera del Duero

The availability of water for irrigation is usually greater at the beginning of spring than in the following months, until the end of summer, in most regions of Spain.

The impact of global warming on Ontario’s icewine industry

Ontario’s wine regions lie at the climatic margins of commercial viticulture owing to their cold winters and short cool growing season. The gradual warming of northern latitudes projected under a human-induced climate change scenario could bring mixed benefits to these wine regions.