Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

Abstract

AIM: The increase in the temperature and the more severe water stress conditions, trends observed in recent years as a consequence of climate change, are leading a mismatch between the technological and phenolic maturity of grapes [1]. As a strategy to face this situation, the use of apatite (Ap) nanoparticles as nano-transporters of the elicitor, methyl jasmonate (Ap-MeJ), is proposed. Elicitors are compounds that, when applied to plants, activate their defense mechanisms, increasing the synthesis of secondary metabolites, mainly phenolic compounds [2, 3]. To date, methyl jasmonate (MeJ) has been used conventionally, but its “nano” application could improve its penetration into the plant, releasing it slowly, which would allow a reduction in the dose to be applied. Therefore, the objective of this work was to study the influence of foliar application of conventional MeJ and MeJ formulated in “nano” form on the composition of Tempranillo grapes during ripening.

METHODS: The experimental design was a randomized block design with three treatments, each in triplicate, with 10 vines per replicate. Foliar applications were carried out at veraison and 7 days later. In each application, 200 mL of solution was applied per plant, being the treatments: control (water), MeJ (10 mM) and Ap-MeJ (1 mM). Grape samples were taken at five points in time: one day before the first application (Fol1), one day before the second application (Fol2), fifteen days after the second application (Pre: pre-harvest), the day of harvest (Vend) and 15 days after harvest (Post: post-harvest). In each sample, the general parameters were determined using official methods [4]: ºBrix, pH, total acidity, glucose+fructose, malic acid, and total phenols.

RESULTS: The results obtained with the foliar application of MeJ as a tool to approximate the phenolic and technological maturity are promising. It has been observed that both, conventional MeJ and Ap-MeJ treatments, slightly reduced ºBrix of grapes and increased their phenolic content. Throughout ripening, the increase in phenolic compounds was mainly evident from pre-harvest to post-harvest, with a higher content in grapes treated with Ap-MeJ.

CONCLUSIONS:

The application of MeJ could be an appropriate technique to mitigate the negative effects of decoupling in grape ripening related to the climate change. Moreover, the use of Ap-MeJ allows to optimize its dosage, contributing to a sustainable and economically viable viticulture.

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Teresa Garde-Cerdán , Carretera De Burgos, Pérez-Álvarez, Baroja, Ramírez-Rodríguez,  Martínez-Vidaurre, Delgado-López P. Rubio-Bretón, Garde-Cerdán

Instituto De Ciencias De La Vid Y Del Vino (Csic, Universidad De La Rioja, Gobierno De La Rioja). Km. 6. 26007 Logroño, Spain,E.P.
Instituto De Ciencias De La Vid Y Del Vino E.
Instituto De Ciencias De La Vid Y Del Vino G.B. Universidad De Granada J.M.
Instituto De Ciencias De La Vid Y Del Vino J.M.
Instituto De Ciencias De La Vid Y Del Vino T.
Instituto De Ciencias De La Vid Y Del Vino

Contact the author

Keywords

Elicitors; nanotechnology; methyl jasmonate; foliar application; vineyard; grape composition; ripening; phenolic maturity; technological maturity; climate change

Citation

Related articles…

A multidisciplinary approach to evaluate the effects of the training system on the performance of “Aglianico del Vulture” vineyards

Vineyards are complex agro-ecosystems with high spatial and temporal variability. An efficient training system may counteract the adverse effects of this variability. Moreover, considering the climate change issues, choosing an efficient training system that enhances water use and protects the vines from radiative thermal stress has become a priority for the farmers. A multidisciplinary approach that assesses the soil-crop-yield-wine relationships of vineyards in a distributed and holistic way could bring added knowledge on the behavior of the different training systems. This ongoing research aimed to implement a multidisciplinary approach to study the behavior of “Aglianico del Vulture” grapevines trained with two different systems: a spurred cordon (SC) and an “Alberello in parete” (AL), grown in a high-quality wine production area of Basilicata region (Italy). The approach merged several methods and scales of soil, ecophysiology, must/wine quality, and spectral data collection to assess the influence of the training system. Homogeneous zones (HZs) in both training systems were defined through a procedure based on geomorphological classification, unmanned aerial vehicles (UAV) images analysis, and a traditional soil survey supported by geophysical scanning. During the 2021 season, TDR probes monitored soil water content, while grapevine health status was assessed using eco-physiological measurements (LWP, chlorophyll content, PSII photosynthetic efficiency, LAI, and point-based field spectroscopy). These grapevine in-vivo measurements validated the spectral vegetation indexes (NDVI, RENDVI, CVI, and TVI) derived from the UAV multispectral imagery, which monitored the grapevine status in a distributed and non-invasive way. Grape yield, quality of berries, must and wine were measured to assess the effects of the training systems. The first experimental year results showed the variability of the vineyards and revealed relationships among soil parameters, crop characteristics, and vegetation indices of the SC and AL training systems. This multidisciplinary study could bring new insights into the vineyard training system’s effects on grape yield and wine quality.

The role of ampelographic collection in genetic improvement of native varieties and the creation new varieties

The available plant diversity is maintained in global genetic collections and germplasm banks. One of the main objectives of the study of the genetic material of vine still conducting research to characterize the genotypes and the creation of new varieties. The main ampelographic collection of the country, the largest in the Balkans, is located at the Athens Vine Institute in Lykovrisi, Attica, in an area of 70 acres. It contains more than 800 varieties, most of which are indigenous. The Institute is conducting research on the genetic improvement of native varieties and the creation new winemaking and table grape varieties of high productivity, grape quality, resistance to fungal diseases and their adaptability to stresses using the hybridization method using European high-quality varieties.

Hyperspectral imaging for the appraisal of varietal aroma composition along maturation in intact Vitis vinifera L. Tempranillo Blanco berries

The knowledge of the grape aromatic composition during ripening provides very important information for winegrowers, who may carry out different viticultural practices, or determine the harvest date more accurately. However, there are currently no tools that allow this measurement to be carried out in a non-invasive and rapid way. For this reason, the aim of this work was to design a non-invasive methodology, based on hyperspectral imaging to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening.

Influence of nitrogen supply on colorimetric parameters of Lugana wines

AIM: Color is one of the main qualitative parameters of a wine. As a matter of fact, immediately after having opened a bottle of wine, color, even before aroma and taste, is the first sensorial parameter to be evaluated by the consumer It can change according to various factors depending on the characteristics of the grapes or on the different production and storage processes. This study aims to evaluate the color differences on Lugana wines that are fermented with different yeast and nitrogen supply.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.