Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

Abstract

AIM: The increase in the temperature and the more severe water stress conditions, trends observed in recent years as a consequence of climate change, are leading a mismatch between the technological and phenolic maturity of grapes [1]. As a strategy to face this situation, the use of apatite (Ap) nanoparticles as nano-transporters of the elicitor, methyl jasmonate (Ap-MeJ), is proposed. Elicitors are compounds that, when applied to plants, activate their defense mechanisms, increasing the synthesis of secondary metabolites, mainly phenolic compounds [2, 3]. To date, methyl jasmonate (MeJ) has been used conventionally, but its “nano” application could improve its penetration into the plant, releasing it slowly, which would allow a reduction in the dose to be applied. Therefore, the objective of this work was to study the influence of foliar application of conventional MeJ and MeJ formulated in “nano” form on the composition of Tempranillo grapes during ripening.

METHODS: The experimental design was a randomized block design with three treatments, each in triplicate, with 10 vines per replicate. Foliar applications were carried out at veraison and 7 days later. In each application, 200 mL of solution was applied per plant, being the treatments: control (water), MeJ (10 mM) and Ap-MeJ (1 mM). Grape samples were taken at five points in time: one day before the first application (Fol1), one day before the second application (Fol2), fifteen days after the second application (Pre: pre-harvest), the day of harvest (Vend) and 15 days after harvest (Post: post-harvest). In each sample, the general parameters were determined using official methods [4]: ºBrix, pH, total acidity, glucose+fructose, malic acid, and total phenols.

RESULTS: The results obtained with the foliar application of MeJ as a tool to approximate the phenolic and technological maturity are promising. It has been observed that both, conventional MeJ and Ap-MeJ treatments, slightly reduced ºBrix of grapes and increased their phenolic content. Throughout ripening, the increase in phenolic compounds was mainly evident from pre-harvest to post-harvest, with a higher content in grapes treated with Ap-MeJ.

CONCLUSIONS:

The application of MeJ could be an appropriate technique to mitigate the negative effects of decoupling in grape ripening related to the climate change. Moreover, the use of Ap-MeJ allows to optimize its dosage, contributing to a sustainable and economically viable viticulture.

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Teresa Garde-Cerdán , Carretera De Burgos, Pérez-Álvarez, Baroja, Ramírez-Rodríguez,  Martínez-Vidaurre, Delgado-López P. Rubio-Bretón, Garde-Cerdán

Instituto De Ciencias De La Vid Y Del Vino (Csic, Universidad De La Rioja, Gobierno De La Rioja). Km. 6. 26007 Logroño, Spain,E.P.
Instituto De Ciencias De La Vid Y Del Vino E.
Instituto De Ciencias De La Vid Y Del Vino G.B. Universidad De Granada J.M.
Instituto De Ciencias De La Vid Y Del Vino J.M.
Instituto De Ciencias De La Vid Y Del Vino T.
Instituto De Ciencias De La Vid Y Del Vino

Contact the author

Keywords

Elicitors; nanotechnology; methyl jasmonate; foliar application; vineyard; grape composition; ripening; phenolic maturity; technological maturity; climate change

Citation

Related articles…

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.

IMPACT ON CHITOSAN APPLICATION OF DIFFERENT MICROORGANISMS HAVING OENOLOGICAL INTEREST

Chitosan is an effective antimicrobial agent available in the wine industry, because it ensures the control of a of spoilage microorganisms, such as Brettanomyces of lactic acid bacteria.

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

Outside and inside grapevine roots: arbuscular mycorrhizal fungal communities in a ‘nebbiolo’ vineyard 

In field conditions, grapevine roots are colonized by arbuscular mycorrhizal fungi (AMF). Little is known about the species composition of AMF communities associated to grapevine.

Cumulative effects of repeated drought stress on berry composition, and phenolic profile: Field experiment insights

Drought stress has a profound impact on grapevine productivity and significantly alters key quality-related traits of berries. Although research has been conducted on the effects of individual drought events, there is still a knowledge gap regarding the cumulative consequences of repeated exposure to water scarcity and the influence of the timing of stress imposition. To address this gap, a field experiment was conducted to investigate the impacts of repeated drought stress on yield, berry composition, and the phenolic profile of grape berries. The results indicate that yield is primarily influenced by pre-veraison water deficit. Although the number of clusters was only slightly reduced, a substantial decrease in berry size was observed, resulting in a notable reduction in overall yield.