Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Effect of grape harvest time on the metabolomic profile of ribolla gialla monovarietal sparkling wines

Effect of grape harvest time on the metabolomic profile of ribolla gialla monovarietal sparkling wines

Abstract

AIM: The timing of grape harvest is crucial factor to be considered in the winemaking process, as delayed harvest increases the content of varietal aromas, esters, aldehydes, and alcohols, while concentration of green odor related compounds decreases [1,2]. In order to target optimal grape ripeness and maximize positive attributes of Ribolla Gialla sparkling wine, an experiment with three different harvest dates was established to determine whether an extended harvest might lead to an increase of important odor-impact compounds, and possibly improve wine sensory profile.

METHODS: The harvest timing trial was examined across three consecutive seasons in Friuli Venezia Giulia region, Italy, where the first harvest was set when a minimum compromise was reached between the accumulation of sugars and the level of titratable acidity of the grapes. The second and third harvests were separated by a maximum of seven days, depending on meteorological conditions. In addition to sensory evaluation, a multitargeted metabolomics approach was applied for chemical characterization of wine samples, focusing on volatile compounds, lipid substances, and aromatic amino acid metabolites.

RESULTS: As far as the composition in volatile compounds is concerned, the results have shown a significant advantage in the transition from first to the second harvest time, which resulted in enhanced production of esters, while in certain cases, the additional third harvest caused the increase of acetic acid and other volatile fatty acids. The lipid composition was not affected by the harvest time; however, the lipid content varied depending on the seasonal factor. Concerning tryptophan metabolites, it has been clearly shown that the extension of harvest date was not necessarily correlated with the formation of untypical aging substances that could compromise the quality of sparkling wines. Lastly, the sensory analysis revealed that the highest scores for preference were assigned to the wines from the second harvest. These samples were associated with ‘floral’ and ‘tropical’ descriptors, which appeared to be in accordance with the chemical analysis.

CONCLUSIONS

The presented results indicate significant and coherent modulations of wine aroma profile in relation to grape harvest date. Therefore, this study could represent a great practical feedback for winegrowers, in order to determine the optimal harvest time.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Domen Škrab

1 Department of Food Quality and Nutrition (DQAN), Edmund Mach Foundation, San Michele all’Adige, TN, Italy 2 Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Udine, UD, Italy,Paolo SIVILOTTI, Di4A, University of Udine, Italy Piergiorgio COMUZZO, Di4A, University of Udine, Italy Sabrina VOCE, Di4A, University of Udine, Italy Silvia CARLIN, DQAN, Edmund Mach Foundation, Italy Panagiotis ARAPITSAS, DQAN, Edmund Mach Foundation, Italy Domenico MASUERO, DQAN, Edmund Mach Foundation, Italy Urska VRHOVSEK, DQAN, Edmund Mach Foundation, Italy

Contact the author

Keywords

ribolla gialla; sparkling wine; harvest timing; volatile organic compounds; lipids; aromatic amino acid metabolites; sensory analysis

Citation

Related articles…

Vineyard mulching offer many benefits beyond winter protection

Grapevines are susceptible to freezing damage at temperatures below -5°F during the winter season. Preventing winter injury to grapevines is a major challenge in many grape-producing regions. Conventional methods such as hilling-up soil over graft unions have been developed as winter protection methods for preventing vine loss. However, these practices have drawbacks such as soil erosion, vine damage and crown gall development.

A general phenological model for characterising grape vine flowering and véraison

The timing of phenology is critical if grape quality potential is to be optimized. Phenological process based models are used to predict phenology. In this study, three different models

Beneficial effects of moderate consumption of Teran red wine on blood lipid profile: a preliminary study on healthy volunteers

Moderate wine consumption may impact several human health aspects, among others as a result of phenolic compounds present in wine and their bioactive properties. The aim of this study was to determine whether six weeks of daily, moderate Teran red wine consumption affects the levels of total cholesterol, high-density lipoprotein cholesterol – HDL, low-density lipoprotein cholesterol – LDL, and triglycerides. Sixty-eight healthy adults (46 women and 22 men) aged 25-64 years voluntarily agreed to participate in the study.

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.

Rootstock differences in soil-water uptake during drying-wetting cycles imaged with 3d electrical resistivity tomography

Limited knowledge has been acquired on grapevine roots and rhizosphere processes because of harder access when compared to aerial parts. There is need for new methods to study root behavior in undisturbed field conditions, and relate these effects on canopy and yield. The aim of this multidisciplinary study was to image and quantify spatial-temporal differences in soil-water uptake by genetically different rootstocks and to assess the response of the canopy during drought and rewetting.