Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Development of a new indicator of grape skin ripening in relation to Botrytis cinerea susceptibility

Development of a new indicator of grape skin ripening in relation to Botrytis cinerea susceptibility

Abstract

The bunch rot induced by Botrytis cinerea is an important disease of grapevine that causes a diminution of grape quality and a considerable yield loss leading to an economic loss. Currently, the most common methods to control this rot are canopy management and the use of fungicides, which has harmful effect on the environment and human health .The main grape barrier against pathogen remains grape skin, the resistance includes many factors which can be physical, biochemical or anatomical. Therefore, a new indicator based on these parameters of grape skin needs to be developed to evaluate the rot sensitivity and reduce the use of fungicides in vineyards. During ripening, B. cinerea sensitivity increases due to a loss of skin elasticity and an increase of grape skin porosity. These modifications are the result of different enzymatic activities (pectin methyl esterase (PME), polygalacturonase (PG), xyloglucan endotransglucosylase (XET)) that degrade the skin parietal polysaccharides. A combined physical and biochemical approach was developed to evaluate the Botrytis cinerea susceptibility of three Champagne varieties: Vitis vinifera cv. Pinot noir, Meunier and Chardonnay. Our results show that the skin ripening process differs between varieties and that our indicators (skin thickness, water availability, activity and gene expression of PME, PG and XET) can be used to describe the evolution of skin ripening profile for each cultivar and to explain the different susceptibility between three cultivars.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marie Andre

Unité de Recherche Œnologie, EA 457n USC 1366 INRAE, Université de Bordeaux, ISVV, 33882, Villenave d’Ornon, France MHCS, Epernay, France,Audrey BARSACQ, Unité de Recherche Œnologie, EA 457n USC 1366 INRAE, Université de Bordeaux, ISVV, 33882, Villenave d’Ornon, France Baptiste VAN GYSEL, MHCS, Epernay, France Diane COUROT, MHCS, Epernay, France Laurence MERCIER, MHCS, Epernay, France Laurence GENY-DENIS, Unité de Recherche Œnologie, EA 457n USC 1366 INRAE, Université de Bordeaux, ISVV, 33882, Villenave d’Ornon, France

Contact the author

Keywords

grape skin, Botrytis cinerea, thickness, champagne

Citation

Related articles…

FACTORS AFFECTING QUERCETIN SOLUBILITY IN SANGIOVESE RED WINE: FIRST RESULTS

Quercetin (Q) is present in grape in form of glycosides and as aglycone. These compounds are extracted from grape skins during winemaking. In wines, following the hydrolysis reactions, the amount of quercetin aglycon can exceed its solubility value. Unfortunately, a threshold solubility concentration for quercetin in wine is not easy to determine because it depends on wine matrix (Gambuti et al., 2020).

Organic and biodynamic viticulture affect soil quality and soil microbial diversity

The production of organically grown crops developed exponentially in the last few decades based on consumer demands for healthy food

Recognition of terroir in american viticultural areas

Un’ Area di Viticultura Americana, detta AVA, è una regione vinicola delimitata ed è dis­tinguibile da caratteristiche geografiche i cui confini sono stati definiti da regolamenti. Il sistema AVA rappresenta un ‘accettazione del concetto di terroir (terreno), come dimostra­no gli studi che confermano il carattere regionale dei vini AVA e dalla sviluppo di sub­denominazioni più relazionate al terreno.

Late frost protection in Champagne

Probably one of the most counterintuitive impacts of climate change on vine is the increased frequency of late frost. Champagne, due to its septentrional position is historically and regularly affected by this meteorological hazard. Champagne has therefore developed a strong experience in frost protection with first experiments dating from the end of 19th century. Frost protection can be divided in two parts: passive and active. Passive protection includes all the methods that do not seek to modify the vine’s environment or resistance at the time of frost. The most iconic passive protection in Champagne is the establishment of the individual reserve. This reserve allows to stock a certain quantity of clear wine during a surplus year to compensate a meteorological hazard like frost during the following years. Other common passive methods are the control of planting area (walls, bushes, topography), the choice of grape variety, late pruning, or the impact of grass cover and tillage. Active frost protection is also divided in two parts. Most of the existing techniques tend to modify vine’s environment. Most of the time they provide warmth (candles, heaters, windmills, heating cables…), or stabilise bud’s temperature above a lethal threshold (water sprinkling). The other way to actively fight is to enhance the resistance of buds to frost (elicitors). The Comité Champagne evaluates frost protection methods following three main axes: the efficiency, the profitability, and the environmental impact through a lifecycle assessment. This study will present the results on both passive and active protection following these three axes.

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.