Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Development of a new indicator of grape skin ripening in relation to Botrytis cinerea susceptibility

Development of a new indicator of grape skin ripening in relation to Botrytis cinerea susceptibility

Abstract

The bunch rot induced by Botrytis cinerea is an important disease of grapevine that causes a diminution of grape quality and a considerable yield loss leading to an economic loss. Currently, the most common methods to control this rot are canopy management and the use of fungicides, which has harmful effect on the environment and human health .The main grape barrier against pathogen remains grape skin, the resistance includes many factors which can be physical, biochemical or anatomical. Therefore, a new indicator based on these parameters of grape skin needs to be developed to evaluate the rot sensitivity and reduce the use of fungicides in vineyards. During ripening, B. cinerea sensitivity increases due to a loss of skin elasticity and an increase of grape skin porosity. These modifications are the result of different enzymatic activities (pectin methyl esterase (PME), polygalacturonase (PG), xyloglucan endotransglucosylase (XET)) that degrade the skin parietal polysaccharides. A combined physical and biochemical approach was developed to evaluate the Botrytis cinerea susceptibility of three Champagne varieties: Vitis vinifera cv. Pinot noir, Meunier and Chardonnay. Our results show that the skin ripening process differs between varieties and that our indicators (skin thickness, water availability, activity and gene expression of PME, PG and XET) can be used to describe the evolution of skin ripening profile for each cultivar and to explain the different susceptibility between three cultivars.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marie Andre

Unité de Recherche Œnologie, EA 457n USC 1366 INRAE, Université de Bordeaux, ISVV, 33882, Villenave d’Ornon, France MHCS, Epernay, France,Audrey BARSACQ, Unité de Recherche Œnologie, EA 457n USC 1366 INRAE, Université de Bordeaux, ISVV, 33882, Villenave d’Ornon, France Baptiste VAN GYSEL, MHCS, Epernay, France Diane COUROT, MHCS, Epernay, France Laurence MERCIER, MHCS, Epernay, France Laurence GENY-DENIS, Unité de Recherche Œnologie, EA 457n USC 1366 INRAE, Université de Bordeaux, ISVV, 33882, Villenave d’Ornon, France

Contact the author

Keywords

grape skin, Botrytis cinerea, thickness, champagne

Citation

Related articles…

Survey of winegrape irrigation practices in the Sacramento-San Joaquin Valley of California

In California vineyards, irrigation is considered as one of the most important decisions growers will make. Recent research has revealed that decisions of when to begin irrigation and how much water to apply have considerable consequences for final grape quality and hence wine quality. However, it is unclear whether and to what extent the average winegrape grower uses objective data to begin irrigating or to determine the amount of water to apply.

Discrimination of white wines by Raman spectroscopy coupled with chemometric methods

France is the largest exporter of wine in the world. The export turnover is estimated at 8.7 billion euros in 2017 for 13 million hectoliters sold. This lucrative business pushes scammers to increase the value of some low-end wines by cheating on their appellations, quality or even their origins. These facts lead to losing 1.3 billion euros each year to the European Union’s wine and spirits companies.

How the management of ph during winemaking affects acetaldehyde evolution and the formation of polymeric phenolics over the red wine aging

The aim of this study is to evaluate the role of pH on both the acetaldehyde chemistry and wine phenolics evolution over the aging period. In addition, the effect of both an early and late acidification was evaluated

VINIoT: Precision viticulture service for SMEs based on IoT sensors network

The main innovation in the VINIoT service is the joint use of two technologies that are currently used separately: vineyard monitoring using multispectral imaging and deployed terrain sensors. One part of the system is based on the development of artificial intelligence algorithms that are feed on the images of the multispectral camera and IoT sensors, high-level information on water stress, grape ripening status and the presence of diseases. In order to obtain algorithms to determine the state of ripening of the grapes and avoid losing information due to the diversity of the grape berries, it was decided to work along the first year 2020 at berry scale in the laboratory, during the second year at the cluster scale and on the last year at plot scale. Different varieties of white and red grapes were used; in the case of Galicia we worked with the white grape variety Treixadura and the red variety Mencía. During the 2020 and 2021 campaigns, multispectral images were taken in the visible and infrared range of: 1) sets of 100 grapes classifying them by means of densimetric baths, 2) individual bunches. The images taken with the laboratory analysis of the ripening stage were correlated. Technological maturity, pH, probable degree, malic acid content, tartaric acid content and parameters for assessing phenolic maturity, IPT, anthocyanin content were determined. It has been calculated for each single image the mean value of each spectral band (only taking into account the pixels of interest) and a correlation study of these values with laboratory data has been carried out. These studies are still provisional and it will be necessary to continue with them, jointly with the training of the machine learning algorithms. Processed data will allow to determine the sensitivity of the multispectral images and select bands of interest in maturation.

Prediction of astringency in red wine using tribology approach to study in-mouth perception

AIM Astringency is described as a ‘dry puckering‐like sensation’ following consumption of tannins1 that affect consumer preference of foods and beverages, including red wine2. To improve the understanding of astringency, which is a complex interaction due to multiple mechanisms occurring simultaneously, further studies are needed. In this view, oral tribology is considered a useful technique for beverage study to evaluate the thin-film lubrication properties of saliva resulting in oral friction‐related sensations3. The aim of this study was to examine the film behavior of selected protein-based fluids under controlled friction conditions, to understand polyphenol-protein interactions involved in the sensation of astringency.