Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Development of a new indicator of grape skin ripening in relation to Botrytis cinerea susceptibility

Development of a new indicator of grape skin ripening in relation to Botrytis cinerea susceptibility

Abstract

The bunch rot induced by Botrytis cinerea is an important disease of grapevine that causes a diminution of grape quality and a considerable yield loss leading to an economic loss. Currently, the most common methods to control this rot are canopy management and the use of fungicides, which has harmful effect on the environment and human health .The main grape barrier against pathogen remains grape skin, the resistance includes many factors which can be physical, biochemical or anatomical. Therefore, a new indicator based on these parameters of grape skin needs to be developed to evaluate the rot sensitivity and reduce the use of fungicides in vineyards. During ripening, B. cinerea sensitivity increases due to a loss of skin elasticity and an increase of grape skin porosity. These modifications are the result of different enzymatic activities (pectin methyl esterase (PME), polygalacturonase (PG), xyloglucan endotransglucosylase (XET)) that degrade the skin parietal polysaccharides. A combined physical and biochemical approach was developed to evaluate the Botrytis cinerea susceptibility of three Champagne varieties: Vitis vinifera cv. Pinot noir, Meunier and Chardonnay. Our results show that the skin ripening process differs between varieties and that our indicators (skin thickness, water availability, activity and gene expression of PME, PG and XET) can be used to describe the evolution of skin ripening profile for each cultivar and to explain the different susceptibility between three cultivars.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marie Andre

Unité de Recherche Œnologie, EA 457n USC 1366 INRAE, Université de Bordeaux, ISVV, 33882, Villenave d’Ornon, France MHCS, Epernay, France,Audrey BARSACQ, Unité de Recherche Œnologie, EA 457n USC 1366 INRAE, Université de Bordeaux, ISVV, 33882, Villenave d’Ornon, France Baptiste VAN GYSEL, MHCS, Epernay, France Diane COUROT, MHCS, Epernay, France Laurence MERCIER, MHCS, Epernay, France Laurence GENY-DENIS, Unité de Recherche Œnologie, EA 457n USC 1366 INRAE, Université de Bordeaux, ISVV, 33882, Villenave d’Ornon, France

Contact the author

Keywords

grape skin, Botrytis cinerea, thickness, champagne

Citation

Related articles…

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

Oospore germination dynamics and disease forecasting model for a precision management of downy mildew 

Downy mildew, caused by Plasmopara viticola, is the most economically impactful disease affecting grapevines. This polycyclic pathogen triggers both primary and secondary infection cycles, resulting in significant yield losses when effective disease control measures are lacking. Over the winter, the pathogen survives by forming resting structures, the oospores, derived from sexual reproduction, which produce the inoculum for primary infections. To optimize grapevine downy mildew control and obtain the desired levels of production while minimizing chemical inputs, it is crucial to optimize the timeframe for fungicide application. Disease forecasting models are useful to identify the infection risk.

Effect of ozone treatments in wine production on colour traits, volatile composition, and sensory characteristics of young and short-term aged white wines

The main aim of WiSSaTech project (PRIN P2022LXY3A),supported by the Italian Ministero dell’Università e della Ricerca and European Union-NextGenerationEU, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.

Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Bushfires are a common occurrence throughout Australia and their incidence is predicted to both rise and increase in severity due to climate change. Many of these bushfires occur in areas close to wine regions, which receive different levels of exposure to smoke. Wine produced from smoke-affected grapes are characterised by unpalatable smoky aromas such as “burning rubber”, “smoked meats” and “burnt wood”. These smoke tainted wines are unprofitable and result in significant financial losses for winegrowers.

Variety specific thresholds for plant-based indicators of vine nitrogen status

Aim: Several plant-based indicators of vine N status are reported in the literature. Among these, yeast assimilable nitrogen in grape must (YAN) and total N concentration of petiole and leaf blades are considered to be reliable indicators and so is the chlorophyll index, measured with a device called N-tester. The N-tester index is used to measure the intensity of the green colour of the leaf blade, and therefore to estimate its chlorophyll content.