Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 The use of elicitors in the vineyard to mitigate the effects of climate change on wine quality

The use of elicitors in the vineyard to mitigate the effects of climate change on wine quality

Abstract

The wine sector is being directly affected by climate change. Temperatures above 30ºC can cause a lag between the ripening of the berry pulp (a rapid increase in sugar content) and the skin, due to the longer period required for the skin maturity (1,2). This leads to unbalanced wines, with high alcohol content and lacking in phenolic maturity (3). Many studies have been carried out searching for mechanisms to increase the content of polyphenols and to synchronize the two types of maturity. One option could be the use of elicitors, whose mechanism of action triggers biosynthetic pathways for defense compounds, including phenolic compounds (4). The objective of this study was to determine if the application of three different elicitors to Monastrell grapes during the maturation period could accelerate the synthesis of phenolic compounds and allow the obtention of wines with high phenolic concentration and moderate alcohol content. The elicitors used have been: LalVigneTM Mature, a compound made up of 100% specific fractions of Saccharomyces cerevisiae derivatives; Harpin αβ, a protein of bacterial origin; BION® 50 WG, a chemical inducer composed of the active material acibenzolar-S-methyl. This study has been carried out in 2019, in two different vineyards, one conducted with a trellis system and drip watered and the other one in a non-irrigated globet system. The treatment consisted in two applications at two different moments, at veraison and 14 days later. The grapes were harvested with 22ºBrix and also a control batch was harveted at 26ºBrix. Once the wines were bottled, the physicochemical and chromatic parameters by spectrophotometry were analyzed. The control wine from the trellised vineyard had an alcohol content of 13.81%, and the wines made with grapes treated with elicitors a presented 12.5%, 12.40% and 12.90% when Lavigne, Harpin and Bion were applied, respectly. The alcohol content of the wines made from the grapes from the non-irrigated vineyard was 14.37% for the control wine and 12.46, 13.18 and 12.85% for those made from grapes treated with Lavigne, Harpin and Bion, respectively. In both vineyards, the wines made from the grapes treated with the different elicitors have a lower pH and higher acidity than their respective control wine, mainly in the non-irrigated vineyard. Regarding the wine chromatic parameters and for the wines from elicitor-treated grapes from both vineyards, they presented higher tannin content and similar values of total phenols and color intensity than their control wines, not forgetting that the alcohol content of the former wines was one to two alcohol degrees lower than control wines. Therefore, the use of elicitors can be a promising treatment to speed up the accumulation of phenolics in the grapes so they can be harvested with a lower sugar content and obtain wines with less alcohol content and with an unaffected chromatic parameters.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

María-Pilar Martínez-Pérez 

Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain,Ana-Belén Bautista-Ortín, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain. Encarna Gómez-Plaza, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.

Contact the author

Keywords

wine, grape, elicitors, phenolic compounds

Citation

Related articles…

Resistance profiling of PIWI accessions: insights from Geisenheim university’s breeding program

Context and purpose of the study. Fungus-resistant grape varieties (PIWIs) represent a significant advancement toward more environmentally sustainable viticulture.

The effects of reducing herbicides in New Zealand vineyards

Herbicides are commonly sprayed in the vine row to prevent competition with vines for water and minerals and to keep weeds from growing into the bunch zone. Sprays are applied before budbreak and reapplied multiple times during the season to keep the undervine bare. There is growing concern about the negative effects of herbicides on humans and the environment, and weeds in New Zealand have developed resistance to herbicides. Therefore, it is imperative that we reduce our reliance on herbicides in viticulture and incorporate methods that do not engender resistance.

Implementation of a deep learning-based approach for detecting and localising automatically grapevine leaves with downy mildew symptoms

Grapevine downy mildew is a disease of foliage caused by Oomycete Plasmopara viticola an endoparasite that develops inside grapevine organs and can infect virtually every green organ. Downy mildew is one of the most destructive diseases in wine-growing regions, drastically reducing yield and fruit quality. Traditional manual disease detection relies on farm experts. Human field scouting has been widely used for monitoring the disease progress, however, is costly, laborious, subjective, and often imprecise.

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

Unraveling the role of grape cell wall in shaping the fermentation rate, the polyphenolic profile and quality of red wines from disease-resistant and drought-tolerant grapes in Occitanie varietal selection

Climate change and an evolving environmental and societal context call for the exploration of disease-resistant and/or drought-adapted grape varieties that meet the demands of consumers and society.