Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 The use of elicitors in the vineyard to mitigate the effects of climate change on wine quality

The use of elicitors in the vineyard to mitigate the effects of climate change on wine quality

Abstract

The wine sector is being directly affected by climate change. Temperatures above 30ºC can cause a lag between the ripening of the berry pulp (a rapid increase in sugar content) and the skin, due to the longer period required for the skin maturity (1,2). This leads to unbalanced wines, with high alcohol content and lacking in phenolic maturity (3). Many studies have been carried out searching for mechanisms to increase the content of polyphenols and to synchronize the two types of maturity. One option could be the use of elicitors, whose mechanism of action triggers biosynthetic pathways for defense compounds, including phenolic compounds (4). The objective of this study was to determine if the application of three different elicitors to Monastrell grapes during the maturation period could accelerate the synthesis of phenolic compounds and allow the obtention of wines with high phenolic concentration and moderate alcohol content. The elicitors used have been: LalVigneTM Mature, a compound made up of 100% specific fractions of Saccharomyces cerevisiae derivatives; Harpin αβ, a protein of bacterial origin; BION® 50 WG, a chemical inducer composed of the active material acibenzolar-S-methyl. This study has been carried out in 2019, in two different vineyards, one conducted with a trellis system and drip watered and the other one in a non-irrigated globet system. The treatment consisted in two applications at two different moments, at veraison and 14 days later. The grapes were harvested with 22ºBrix and also a control batch was harveted at 26ºBrix. Once the wines were bottled, the physicochemical and chromatic parameters by spectrophotometry were analyzed. The control wine from the trellised vineyard had an alcohol content of 13.81%, and the wines made with grapes treated with elicitors a presented 12.5%, 12.40% and 12.90% when Lavigne, Harpin and Bion were applied, respectly. The alcohol content of the wines made from the grapes from the non-irrigated vineyard was 14.37% for the control wine and 12.46, 13.18 and 12.85% for those made from grapes treated with Lavigne, Harpin and Bion, respectively. In both vineyards, the wines made from the grapes treated with the different elicitors have a lower pH and higher acidity than their respective control wine, mainly in the non-irrigated vineyard. Regarding the wine chromatic parameters and for the wines from elicitor-treated grapes from both vineyards, they presented higher tannin content and similar values of total phenols and color intensity than their control wines, not forgetting that the alcohol content of the former wines was one to two alcohol degrees lower than control wines. Therefore, the use of elicitors can be a promising treatment to speed up the accumulation of phenolics in the grapes so they can be harvested with a lower sugar content and obtain wines with less alcohol content and with an unaffected chromatic parameters.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

María-Pilar Martínez-Pérez 

Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain,Ana-Belén Bautista-Ortín, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain. Encarna Gómez-Plaza, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.

Contact the author

Keywords

wine, grape, elicitors, phenolic compounds

Citation

Related articles…

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

Effects of organic mulches on the soil environment and yield of grapevine

Farming management practices aiming at conserving soil moisture have been developed in arid and semiarid-areas facing water scarcity problems. Organic mulching is an effective method to manipulate the crop-growing microclimate increasing crop yield by controlling soil temperature, and retaining soil moisture by reducing soil evaporation. In this sense, the effectiveness of different organic mulching materials (straw mulch and grapevine pruning debris) applied within the row of a vineyard was evaluated on the soil and on the vine in a Tempranillo vineyard located in La Rioja (Spain). Organic mulches were compared with a traditional bare soil management technique (based on the use of herbicides to avoid weed incidence). Mulching coverages favourably influenced the soil water retention throughout all the grapevine vegetative cycle. However, the soil-moisture variation was not the same under different mulching materials, being the straw mulch (SM) the one that retained more water in comparison with grapevine pruning debris (GPD) based-cover. The changes of soil moisture in the upper surface layer (0–10 cm) were highly dynamic, probably due to water vapour fluxes across the soil-atmospheric interface. However, both, SM and GPD reduced these fluctuations as compared with bare soils. A similar trend occurred with soil temperature. Both organic mulches altered soil temperature in comparison with bare soil by reducing soil temperature in summer and raising it in winter. Moreover, the same buffering effect for the temperature on the covered soil also remains in the deeper layers. To conclude, we could see that organic mulching had a positive impact on soil-moisture storage and soil temperature and the extent of this effect depends on the type of mulching materials. These changes led to higher rates of photosynthesis and stomatal conductivity compared to bare soils, also favouring crop growth and grape yields.

Epigenetic reponses and memories to (a)biotic stresses in grapevine

Epigenetics corresponds to the complement of genetic information carried in chromatin beyond the DNA sequence.

Adaptation and resilience of scions and rootstocks to water constraint? It’s complicated and requires an integrated approach

The ability, and the underlying mechanisms of grapevines to cope with and adapt to recurring water constraints, are the focuses of this study.