Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 The use of elicitors in the vineyard to mitigate the effects of climate change on wine quality

The use of elicitors in the vineyard to mitigate the effects of climate change on wine quality

Abstract

The wine sector is being directly affected by climate change. Temperatures above 30ºC can cause a lag between the ripening of the berry pulp (a rapid increase in sugar content) and the skin, due to the longer period required for the skin maturity (1,2). This leads to unbalanced wines, with high alcohol content and lacking in phenolic maturity (3). Many studies have been carried out searching for mechanisms to increase the content of polyphenols and to synchronize the two types of maturity. One option could be the use of elicitors, whose mechanism of action triggers biosynthetic pathways for defense compounds, including phenolic compounds (4). The objective of this study was to determine if the application of three different elicitors to Monastrell grapes during the maturation period could accelerate the synthesis of phenolic compounds and allow the obtention of wines with high phenolic concentration and moderate alcohol content. The elicitors used have been: LalVigneTM Mature, a compound made up of 100% specific fractions of Saccharomyces cerevisiae derivatives; Harpin αβ, a protein of bacterial origin; BION® 50 WG, a chemical inducer composed of the active material acibenzolar-S-methyl. This study has been carried out in 2019, in two different vineyards, one conducted with a trellis system and drip watered and the other one in a non-irrigated globet system. The treatment consisted in two applications at two different moments, at veraison and 14 days later. The grapes were harvested with 22ºBrix and also a control batch was harveted at 26ºBrix. Once the wines were bottled, the physicochemical and chromatic parameters by spectrophotometry were analyzed. The control wine from the trellised vineyard had an alcohol content of 13.81%, and the wines made with grapes treated with elicitors a presented 12.5%, 12.40% and 12.90% when Lavigne, Harpin and Bion were applied, respectly. The alcohol content of the wines made from the grapes from the non-irrigated vineyard was 14.37% for the control wine and 12.46, 13.18 and 12.85% for those made from grapes treated with Lavigne, Harpin and Bion, respectively. In both vineyards, the wines made from the grapes treated with the different elicitors have a lower pH and higher acidity than their respective control wine, mainly in the non-irrigated vineyard. Regarding the wine chromatic parameters and for the wines from elicitor-treated grapes from both vineyards, they presented higher tannin content and similar values of total phenols and color intensity than their control wines, not forgetting that the alcohol content of the former wines was one to two alcohol degrees lower than control wines. Therefore, the use of elicitors can be a promising treatment to speed up the accumulation of phenolics in the grapes so they can be harvested with a lower sugar content and obtain wines with less alcohol content and with an unaffected chromatic parameters.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

María-Pilar Martínez-Pérez 

Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain,Ana-Belén Bautista-Ortín, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain. Encarna Gómez-Plaza, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.

Contact the author

Keywords

wine, grape, elicitors, phenolic compounds

Citation

Related articles…

Selection of beneficial endophytes from Sicilian grapevine germplasm 

The recent expansion of arid areas due to climate change is putting grapevine and the other traditional productions at risk in all Mediterranean countries with a limited availability of fundamental resources such as water. It is possible to improve the resilience of vineyards by developing sustainable agricultural practices based on biological and natural resources such as endophytic microorganisms that colonize inner plant tissues, and which can potentially increase the tolerance to abiotic stresses. A selection of grapevine endophytes was conducted from 2021 to 2023 as part of the PRIMA project PROSIT.

Investigating three proximal remote sensing techniques for vineyard yield monitoring

Yield monitoring can provide the winegrowers with information for precise production inputs during the season, thereby, ensuring the best possible harvest. Yield estimation is currently achieved through an intensive process that is destructive and time-consuming. However, remote sensing provides a group of proximal technologies and techniques for a non-destructive and less time-consuming method for yield monitoring.The objective of this study was to analyse three different approaches, for measuring grapevine yield close to harvest.

Effects of rootstock and environment on the behaviour of autochthone grapevine varieties in the Douro region

In an experiment located at Quinta da Cavadinha, Sabrosa, Douro Region the behaviour of the varieties Touriga Nacional (TN), Tinta Barroca (TB), Touriga Franca

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.

Grape genetic research in the age of pangenomes

Combined improvements in sequencing technologies and assembly algorithms have led to staggering improvements in the quality of grape genome assemblies.