Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 The use of elicitors in the vineyard to mitigate the effects of climate change on wine quality

The use of elicitors in the vineyard to mitigate the effects of climate change on wine quality

Abstract

The wine sector is being directly affected by climate change. Temperatures above 30ºC can cause a lag between the ripening of the berry pulp (a rapid increase in sugar content) and the skin, due to the longer period required for the skin maturity (1,2). This leads to unbalanced wines, with high alcohol content and lacking in phenolic maturity (3). Many studies have been carried out searching for mechanisms to increase the content of polyphenols and to synchronize the two types of maturity. One option could be the use of elicitors, whose mechanism of action triggers biosynthetic pathways for defense compounds, including phenolic compounds (4). The objective of this study was to determine if the application of three different elicitors to Monastrell grapes during the maturation period could accelerate the synthesis of phenolic compounds and allow the obtention of wines with high phenolic concentration and moderate alcohol content. The elicitors used have been: LalVigneTM Mature, a compound made up of 100% specific fractions of Saccharomyces cerevisiae derivatives; Harpin αβ, a protein of bacterial origin; BION® 50 WG, a chemical inducer composed of the active material acibenzolar-S-methyl. This study has been carried out in 2019, in two different vineyards, one conducted with a trellis system and drip watered and the other one in a non-irrigated globet system. The treatment consisted in two applications at two different moments, at veraison and 14 days later. The grapes were harvested with 22ºBrix and also a control batch was harveted at 26ºBrix. Once the wines were bottled, the physicochemical and chromatic parameters by spectrophotometry were analyzed. The control wine from the trellised vineyard had an alcohol content of 13.81%, and the wines made with grapes treated with elicitors a presented 12.5%, 12.40% and 12.90% when Lavigne, Harpin and Bion were applied, respectly. The alcohol content of the wines made from the grapes from the non-irrigated vineyard was 14.37% for the control wine and 12.46, 13.18 and 12.85% for those made from grapes treated with Lavigne, Harpin and Bion, respectively. In both vineyards, the wines made from the grapes treated with the different elicitors have a lower pH and higher acidity than their respective control wine, mainly in the non-irrigated vineyard. Regarding the wine chromatic parameters and for the wines from elicitor-treated grapes from both vineyards, they presented higher tannin content and similar values of total phenols and color intensity than their control wines, not forgetting that the alcohol content of the former wines was one to two alcohol degrees lower than control wines. Therefore, the use of elicitors can be a promising treatment to speed up the accumulation of phenolics in the grapes so they can be harvested with a lower sugar content and obtain wines with less alcohol content and with an unaffected chromatic parameters.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

María-Pilar Martínez-Pérez 

Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain,Ana-Belén Bautista-Ortín, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain. Encarna Gómez-Plaza, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.

Contact the author

Keywords

wine, grape, elicitors, phenolic compounds

Citation

Related articles…

VitiProtect–Development and testing of a downy mildew AI forecasting model for Swiss viticulture

Downy mildew (Plasmopara viticola) is a fungal pathogen that causes a destructive disease in grapevines (Vitis vinifera).

Grapevine bud fertility under elevated carbon dioxide

Aims: Microscopic bud dissection is a common tool used to assess grapevine bud fertility and therefore to predict the yield of the following season

Effect of fertigation strategies to adapt PGI Côtes de Gascogne production to hot vintage

The development of fertigation could be a possible solution to adapt PGI Côtes de Gascogne (south-western France) wine production to climate change. The goal would be to limit the negative effects of water stress on yield performance expectation (around 15 tons per hectare) and to make the use of fertilizers more efficient. This study aimed to compare the effects of three strategies of water and minerals supply on grapes and wines qualities. Two fertigation practices were compared to a rainfed control which is the current standard of the local grape growing production. The fertilizers (nitrogen and potassium) were (i) fully brought by irrigation pipe during the season, (ii) partially brought by irrigation pipe and partially on the soil or (iii) fully brought on the soil at the beginning of the season for the non-irrigated control (local standard). The trial was run on cv. Colombard trained on spur pruned with vertical shoot positioning system on a sandy-silty-clay soil over the 2020 vintage which was particularly hot for the region. Moderate to strong water deficit appeared during the growing period of the berries and held on after veraison. Irrigation strategies allowed for maintaining grapevine without water deficit and being significantly different from the control water status. Grapevine with fully or partial fertigation strategies produced 25% more yield mainly due to the increase of the bunch weight. Also, the fully fertigation showed the best ratio between yield and maturity and brought 30% less of fertilizers (both nitrogen and potassium) than the two other strategies. Finally, the analysis of aromatic compounds in Colombard wines, varietal thiols family, showed the same level of concentrations for the 3 treatments, confirming that the yield performance did not impact the aromatic potential in this trial.

Phloem anatomy traits predict maximum sugar accumulation rates

Heat and water stress can accelerate berry sugar accumulation and lead to excessive sugar-to-acid ratios at harvest, producing bland, overly-alcoholic wines. Selecting grapevines for slower sugar accumulation could help maintain wine quality under future, hotter conditions, but these efforts have been stymied by our limited understanding of the traits determining sugar accumulation rates. Here, we measured traits characterizing the structure and anatomy of the sugar transport system – the phloem – in 16 winegrape cultivars and tested for relationships with sugar accumulation rates and cultivar climate classifications.

Grapes aminoacidic profile: impact of abiotic factors in a climate change scenario

Amino acids play a crucial role in determining grape and wine quality [1]. Recently, research has suggested their metabolism is key to plant abiotic stress tolerance [2]. Therefore, the study of amino acid accumulation in grape berries and its response to environmental factors is of both scientific and economic importance.