Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Enological and nutraceutical potential of some grape varieties tolerant to downy mildew and powdery mildew

Enological and nutraceutical potential of some grape varieties tolerant to downy mildew and powdery mildew

Abstract

AIM: Since 2012 the Veneto Region regulation (north-east Italy) allowed wine production using 20 hybrid grapevine varieties selected for their high tolerance to downy mildew and powdery mildew. Characterized by vigour, high grape productivity and low pesticide use, these varieties are suitable to develop sustainable viticulture in mountain areas located at medium altitudes. Project VINIRES (October 2018-November 2021) evaluates the oenological potential of four resistant vine varieties currently diffused at medium altitudes: Cabernet Cortis, Bronner, Souvignier gris, Johanniter. Study by metabolomics provides the complete qualitative and semi-quantitative profile of secondary metabolites in grape to estimate the enological potential of these varieties.

METHODS: Grapes harvested in 2019 and 2020 from vineyards located in Belluno province. Analyses performed by UHPLC/Q-TOF 40.000-resolution mass spectrometry. Targeted identification of the metabolites by using the homemade database GrapeMetabolomics (Flamini et al., 2013).

RESULTS: Cabernet Cortis: presence of anthocyanin diglucosides (Mv-diglu, Dp-diglu, Cy-diglu, Pt-diglu, Pn-diglu). Anthocyanin content comparable to V. Vinifera varieties such as Cabernet Sauvignon and Raboso Piave (Mattivi et al., 2006). Relevant presence of B-ring trisubstituted flavonols. Linalool and nerol pentosyl-hexoside as main aroma precursors. Bronner: high content of flavonoids such as quercetin (Q), taxifolin (T), and flavanones. Significant presence of monoterpene-diols glycosylated. Johanniter: high antioxidants such as rutin and Q-pentoside, significant T-pentoside. Main aroma precursor geraniol glycoside. Souvignier gris: presence of some anthocyanins (Cy-diglu, Cy-monoglu 3-fold than Cabernet Cortis) and stilbene compounds. Main aroma precursors: alpha-terpineol pentosyl-hexoside and vomifoliol glucoside (roseoside).

CONCLUSIONS:

Cabernet Cortis is suitable for production of wood-aged wines with floral notes. Bronner has semi-aromatic character and an interesting potential for producing fresh and fruity white wines. Johanniter, characterized by high geraniol, has high aptitude to produce aromatic sparkling wines. Souvignier gris is characterized by the presence of alpha-terpineol glycoside (floral aroma precursor) and stilbene phytoalexins correlated to the nutraceutical properties of wines.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Fabiola De Marchi, Mirko DE ROSSO, Massimo GARDIMAN, Luigi SANSONE, Annarita PANIGHEL

Council for Agricultural Research and Economics – Viticulture & Enology (CREA-VE)

Contact the author

Keywords

Resistant vine, grape, metabolomics, high resolution mass spectrometry, polyphenols, aroma precursors, phytoalexins

Citation

Related articles…

An Ag+ SPE method combined with Deans’ switch heart-cutting MDGC–MS/Olfactometry approach for identifying unknown volatile thiols in wine

Wine aroma is a crucial quality criterion. A multitude of volatile compounds have been identified and correlated to the aroma attributes perceived in wine.

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Vine-growing zoning of the municipal territories of Ronda and Arriate (Malaga, Spain), « Sierras de Málaga » registered appellation of origin mark

The aim of this communication is the study of the Ronda and Arriate municipal territories environment in order to define and to establish the main physical factors in relation to vine-growing land use. The vine-growing zoning proposed is based on geopedological and climatic features.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

Soave beyond the zonation

In a previous zoning program (1998-2002), climatic and pedological factors were able to distinguish 14 terroir within the Soave DOC area where wine characteristics are well recognizable. Nevertheless, in the past vinegrowers identified several vineyards where a better quality of the grapes and wines could be obtained. So, « beyond the zonation » will aim to suggest a new methodology to characterise the Cru, starting with 15 vineyards that were selected in the Soave Classico DOC area. In the year 2005, a meteorological station was positioned in each vineyard and temperature data were collected; because of the limited area of investigation, only 3 rain sensors were set up.