Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Enological and nutraceutical potential of some grape varieties tolerant to downy mildew and powdery mildew

Enological and nutraceutical potential of some grape varieties tolerant to downy mildew and powdery mildew

Abstract

AIM: Since 2012 the Veneto Region regulation (north-east Italy) allowed wine production using 20 hybrid grapevine varieties selected for their high tolerance to downy mildew and powdery mildew. Characterized by vigour, high grape productivity and low pesticide use, these varieties are suitable to develop sustainable viticulture in mountain areas located at medium altitudes. Project VINIRES (October 2018-November 2021) evaluates the oenological potential of four resistant vine varieties currently diffused at medium altitudes: Cabernet Cortis, Bronner, Souvignier gris, Johanniter. Study by metabolomics provides the complete qualitative and semi-quantitative profile of secondary metabolites in grape to estimate the enological potential of these varieties.

METHODS: Grapes harvested in 2019 and 2020 from vineyards located in Belluno province. Analyses performed by UHPLC/Q-TOF 40.000-resolution mass spectrometry. Targeted identification of the metabolites by using the homemade database GrapeMetabolomics (Flamini et al., 2013).

RESULTS: Cabernet Cortis: presence of anthocyanin diglucosides (Mv-diglu, Dp-diglu, Cy-diglu, Pt-diglu, Pn-diglu). Anthocyanin content comparable to V. Vinifera varieties such as Cabernet Sauvignon and Raboso Piave (Mattivi et al., 2006). Relevant presence of B-ring trisubstituted flavonols. Linalool and nerol pentosyl-hexoside as main aroma precursors. Bronner: high content of flavonoids such as quercetin (Q), taxifolin (T), and flavanones. Significant presence of monoterpene-diols glycosylated. Johanniter: high antioxidants such as rutin and Q-pentoside, significant T-pentoside. Main aroma precursor geraniol glycoside. Souvignier gris: presence of some anthocyanins (Cy-diglu, Cy-monoglu 3-fold than Cabernet Cortis) and stilbene compounds. Main aroma precursors: alpha-terpineol pentosyl-hexoside and vomifoliol glucoside (roseoside).

CONCLUSIONS:

Cabernet Cortis is suitable for production of wood-aged wines with floral notes. Bronner has semi-aromatic character and an interesting potential for producing fresh and fruity white wines. Johanniter, characterized by high geraniol, has high aptitude to produce aromatic sparkling wines. Souvignier gris is characterized by the presence of alpha-terpineol glycoside (floral aroma precursor) and stilbene phytoalexins correlated to the nutraceutical properties of wines.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Fabiola De Marchi, Mirko DE ROSSO, Massimo GARDIMAN, Luigi SANSONE, Annarita PANIGHEL

Council for Agricultural Research and Economics – Viticulture & Enology (CREA-VE)

Contact the author

Keywords

Resistant vine, grape, metabolomics, high resolution mass spectrometry, polyphenols, aroma precursors, phytoalexins

Citation

Related articles…

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.

Impact of agrivoltaics on berry ripening: preliminary results for the white cv. Viosinho

Climate change poses significant challenges for viticulture, particularly in Mediterranean regions like Portugal, where extreme heat and drought conditions are becoming more frequent.

The aroma diversity of Italian white wines: a further piece added to the D-Wines project

The wide ampelographic heritage of the Italian wine grape varieties represents a richness in terms of biodiversity and potential market value.

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).