Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Defoliation timing impacts berry secondary metabolites and sunburn damage

Defoliation timing impacts berry secondary metabolites and sunburn damage

Abstract

Sunburn is a physiological disorder that leads to yield and quality losses in a range of fruits such as grapes and apples. It affects the visual appearance and the composition of the fruit, leading to irreversible changes and ultimately, cell death in extreme situations. Sunburn is caused by a combination of excessive radiation and temperature that lead to photo- and thermal stress, the formation of reactive oxygen species and oxidative stress. A series of factors, such as environmental conditions, grape variety and development stage modulate the final amount of damage. In turn, berries have evolved a series of mechanisms to protect themselves that are dependent on developmental stage [1]. Secondary metabolites such as the carotenoids, polyphenols and even the aroma compounds can act as antioxidants and light screens [2-4], however, the ability to upregulate their production depends on ripening stage [5]. This project aimed to evaluate the changes in secondary metabolism generated by varying degrees of sunburn damage in Chardonnay grapes, and how exposure of berries through defoliation at two different stages in development could modulate sunburn intensity.Field trials were conducted in two vineyards in the Orange region (NSW, Australia) during 2019. Treatments consisted of vines defoliated after the end of flowering, at véraison, and a non-defoliated control. Basic chemistry, carotenoids, polyphenols and free volatile analysis were conducted. Canopy mesoclimate, ultraviolet and photosynthetically active radiation, as well as berry temperature and radiation were monitored throughout the season using a range of sensors and light sensitive tapes.Sunburn damage was modulated by the specific meteorological conditions at each vineyard, and was higher at the warmest vineyard. Changes in grape composition were statistically significant between the different levels of sunburn damage, all of which could be clearly separated using MB-SO-PLS-LDA analysis. Among four different levels of damage studied, undamaged berries were the most distinct category and contained the highest levels of terpenes and lowest levels of polyphenols. As sunburn damage increased, an upregulation of compounds from the xanthophyll cycle was observed as well as of the flavonoids and flavan-3-ols, while a distinct destruction of chlorophyll a and b was also evident. Changes to concentrations of terpenes seemed to be mainly affected by temperature than radiation, and changes to specific aroma compounds such as the GLVs are reported for the first time. Comparison of defoliation treatments revealed that late defoliation led to a higher level and intensity of sunburn damage. Distinct biosynthetic mechanisms were apparent with regards to defoliation timing.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Joanna Gambetta, Leigh M. Schmidtke, Bruno Holzapfel

Charles Sturt University – Faculty of Science;  University of Adelaide, School of Agriculture, Food and Wine; South Australian Research and Development Institute, School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia, School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, New South Wales Department of Primary Industries, Wagga Wagga, NSW 2650, Australia

Contact the author

Keywords

sunburn, leaf removal, chardonnay, carotenoids, polyphenols, aroma compounds

Citation

Related articles…

Impacts of the projected changes in temperature under scenarios of climate change on vine phenology of three red varieties cultivated in Rioja (Spain)

Grapevine is one of the crops that may suffer more negative impacts
under climate change, due not only to changes in temperature but also due to water available. Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenology events and changes in the length of the growing season, which may have further effects on grape quality. The aim of this research was to analyze the changes in vine phenology of some red varieties (Tempranillo, Grenache and Carignan) cultivated in Rioja Oriental (Rioja DOCa), under different climate change scenarios.

Plant biostimulants in combination treatments as environmentally-friendly rest-breaking agents for dormancy release in table grapes Vitis vinifera Crimson Seedless

Context and purpose of the study. Vitis vinifera grapevine is a perennial crop which is globally cultivated, surviving cold winters in temperate zones by entering a state of dormancy.

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a vineyard in southwestern France

Viticulture is facing two major changes – climate change and agroecological transition. In both cases, soil quality is seen as a lever to move towards a more sustainable viticulture. However, soil biological quality is little considered in the implementation of viticultural practices. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it brings together winegrowers from the south-west of France, scientists, advisors and technicians, around a project focused on viticultural soil biological functioning and the design of technical routes more respectful toward soil heritage. To achieve this, the project aims to acquire references on the impact of viticultural practices on soil biology from a dynamic way, and to test a methodology to integrate information provided by the soil bioindicators to manage farming systems. A set of indicators of soil biological quality are evaluated in the project: microorganisms (bacteria and fungi abundance and diversity), fauna (abundance and diversity of nematodes and earthworms), physico-chemical characteristics, soil structure assessment and degradation rate of organic matter. Based on a network of 13 plots that have been subject to an initial diagnosis in 2017, several agronomical practices to restore soil fertility are experimented to redesign the cropping system (for instance plant cover, organic matter inputs, reduction of herbicides, mineral fertilizers). System redesign was made in collaboration by winegrowers and an interdisciplinary group of experts (agronomists, biologists). Several indicators are measured on vine and soil at each vintage to assess vine health and productivity. At the end of the project (2021), a final diagnosis was carried out. Gascogn’Innov allowed to create a regional database on the quality of wine-growing soils, which permitted to evaluate the effect of practices according to soil types. Especially, decreasing the intensity of tillage and increasing the duration and diversity of grass coverage tends to increase the abundance of all the organisms studied. This project confirmed the value of soil biological quality indicators to drive the sustainability of practices, but also highlighted the key-role of expertise, in both agronomy and soil biology, to help winegrowers understand and appropriate their soil quality diagnoses.

Berry maturity effects on physic and chemical characteristics of traditional sparkling wines produced from Chardonnay and Sauvignon blanc grapes.

One of the consequences of global warming is the quick berry development giving rise to a disconnection between sugar accumulation and the formation of important quality minor compounds such as phenolics and volatile compounds being a huge challenge for the oenologist [1]. Thus, this phenomenon is forcing the search on strategies for maintaining the quality of wines despite this situation. One possibility is to make an early harvest with a low sugar concentration (18ºbrix) and advanced harvest for sparkling wine (20-21ºbrix) and afterwards to combine base wines properly and carry out the second fermentation trying to compensate the lack of secondary metabolites due to the quick berry development and higher alcohol degree of the second one, not adequate itself for sparkling wine. The aim of this study was to assess the chemical and physical characteristics, mainly volatile profile, and foaming properties of sparkling wines from grapes of Chardonnay and Sauvignon blanc.

Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Sensory analysis of grape berries is a common tool to evaluate the degree of grape maturation and to make sound picking decisions.