Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Defoliation timing impacts berry secondary metabolites and sunburn damage

Defoliation timing impacts berry secondary metabolites and sunburn damage

Abstract

Sunburn is a physiological disorder that leads to yield and quality losses in a range of fruits such as grapes and apples. It affects the visual appearance and the composition of the fruit, leading to irreversible changes and ultimately, cell death in extreme situations. Sunburn is caused by a combination of excessive radiation and temperature that lead to photo- and thermal stress, the formation of reactive oxygen species and oxidative stress. A series of factors, such as environmental conditions, grape variety and development stage modulate the final amount of damage. In turn, berries have evolved a series of mechanisms to protect themselves that are dependent on developmental stage [1]. Secondary metabolites such as the carotenoids, polyphenols and even the aroma compounds can act as antioxidants and light screens [2-4], however, the ability to upregulate their production depends on ripening stage [5]. This project aimed to evaluate the changes in secondary metabolism generated by varying degrees of sunburn damage in Chardonnay grapes, and how exposure of berries through defoliation at two different stages in development could modulate sunburn intensity.Field trials were conducted in two vineyards in the Orange region (NSW, Australia) during 2019. Treatments consisted of vines defoliated after the end of flowering, at véraison, and a non-defoliated control. Basic chemistry, carotenoids, polyphenols and free volatile analysis were conducted. Canopy mesoclimate, ultraviolet and photosynthetically active radiation, as well as berry temperature and radiation were monitored throughout the season using a range of sensors and light sensitive tapes.Sunburn damage was modulated by the specific meteorological conditions at each vineyard, and was higher at the warmest vineyard. Changes in grape composition were statistically significant between the different levels of sunburn damage, all of which could be clearly separated using MB-SO-PLS-LDA analysis. Among four different levels of damage studied, undamaged berries were the most distinct category and contained the highest levels of terpenes and lowest levels of polyphenols. As sunburn damage increased, an upregulation of compounds from the xanthophyll cycle was observed as well as of the flavonoids and flavan-3-ols, while a distinct destruction of chlorophyll a and b was also evident. Changes to concentrations of terpenes seemed to be mainly affected by temperature than radiation, and changes to specific aroma compounds such as the GLVs are reported for the first time. Comparison of defoliation treatments revealed that late defoliation led to a higher level and intensity of sunburn damage. Distinct biosynthetic mechanisms were apparent with regards to defoliation timing.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Joanna Gambetta, Leigh M. Schmidtke, Bruno Holzapfel

Charles Sturt University – Faculty of Science;  University of Adelaide, School of Agriculture, Food and Wine; South Australian Research and Development Institute, School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia, School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, New South Wales Department of Primary Industries, Wagga Wagga, NSW 2650, Australia

Contact the author

Keywords

sunburn, leaf removal, chardonnay, carotenoids, polyphenols, aroma compounds

Citation

Related articles…

Maturation of Agiorgitiko (Vitis vinifera) red wine on its wine lees: Impact on its phenolic composition

Maturation of wine on lees (often referred as sur lie) is a common practice applied by many winemakers around the world. In the past this method was applied mainly on white and/or sparkling wine production but recently also to red wine production. In our experiment, we matured red wine on wine lees of two origins: a) Light wine lees, collected after the completion of the alcoholic fermentation, b) Heavy lees, collected after the completion of the malolactic fermentation. The lees were free of off-odors and were added in the red wine in percentage 3% and 8%, simulating common winemaking addition. The maturation lasted in total six months and samples were collected for analysis after one, three and six months. During storage the lees were stirred.

Chemical composition of cool-climate Sauvignon blanc grape skins clones during ripening

Sauvignon blanc is the most important variety in cool valleys in central Chile accounting 15,522 ha which corresponds to 42.4% of the cultivated surface with white varieties in Chile

Exploring changes in browning kinetics, color, and antioxidants due to dealcoholization of wine

The global consumer demand for low or non-alcoholic wine is growing steadily in recent years, driven by health concerns, religious beliefs, and personal taste preferences etc.. Consequently, the removal of alcohol from wine can significantly alter its chemical and sensory properties, including color, aroma, and taste, which make a significant challenge for consumer to accept these products. Ethanol plays a crucial role in various chemical reactions and interactions that contribute to the development of wine’s characteristics.

Inhibitory effect of sulfur dioxide, ascorbic acid and glutathione on browning caused by laccase activity

AIM: The aim of this work was to study the inhibitory effect of the three most frequently used wine antioxidants – sulfur dioxide, ascorbic acid and glutathione – on the kinetics of browning caused by Botrytis cinerea laccase using a grape juice synthetic model in which (-)-epicatechin was the substrate.

Learning from remote sensing data: a case study in the Trentino region 

Recent developments in satellite technology have yielded a substantial volume of data, providing a foundation for various machine learning approaches. These applications, utilizing extensive datasets, offer valuable insights into Earth’s conditions. Examples include climate change analysis, risk and damage assessment, water quality evaluation, and crop monitoring. Our study focuses on exploiting satellite thermal and multispectral imaging, and vegetation indexes, such as NDVI, in conjunction with ground truth information about soil type, land usage (forest, urban, crop cultivation), and irrigation water sources in the Trentino region in North-East of Italy.