Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of quercus alba oak barrels from different forest on the volatile composition of Tempranillo wines

Effect of quercus alba oak barrels from different forest on the volatile composition of Tempranillo wines

Abstract

AIM: The species and origin used for red wine oak aging determines the physiological composition of the wood and thus the finished wines. In America, oak is grown primarily in the states of Virginia, Missouri, Kentucky, Oregon, Ohio, Minnesota, Wisconsin and California. The aim of this study is to analyze how the choice of barrels made with Quercus Alba oak from different geographic areas of the United States (Missouri, Kentucky, Ohio and Pennsylvania) influences the volatile composition of the Tempranillo wines.

METHODS: In this study, three different Tempranillo wines were aged for 6 months in new 225-liter American oak barrels (medium toast degree) from different forest of the United States: Missouri, Kentucky, Ohio and Pennsylvania. These barrels were made by the Toneleria Murua in 2018 and the experiences were carried out in three wineries of the D.O.Ca Rioja. Samples were taken when wine was introduced into the barrel, and after 6 months of aging. The volatile compounds of the wines were quantified by gas chromatography with a mass detector (GC-MS) after liquid-liquid extraction of the volatile fraction as described by Oliveira et al. (2008).

RESULTS: The different oak origins did not affect the total content of the volatile families of C6 alcohols, acetates, volatile acids, lactones, carbonyl compounds and volatile phenols. On the contrary, the wines aged on oak from Pennsylvania showed significantly higher values of higher alcohols and ethyl esters. Regarding the individual compounds, wines aged on Pennsylvania barrels showed higher concentrations of whisky lactones. 

CONCLUSIONS

The results obtained in the present study could help for selecting the oak origin that best suited to the different wines.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Zhao Feng

Institute of Grapevine and Wine Sciences (ICVV), Logroño, Spain,Leticia MARTÍNEZ-LAPUENTE, Institute of Grapevine and Wine Sciences (ICVV), Logroño, Spain  Zenaida GUADALUPE, Institute of Grapevine and Wine Sciences (ICVV), Logroño, Spain  Belén AYESTARÁN, Institute of Grapevine and Wine Sciences (ICVV), Logroño, Spain

CONTACT THE AUTHOR

Keywords

oak in wine aging, origin, aromatic compounds

Citation

Related articles…

Unravelling regional typicality of Australian premium Shiraz through an untargeted metabolomics approach

Aims: The current study seeks to demonstrate that premium Shiraz wines from different Australian geographic indications (GI) can be distinguished by their volatile compound composition. 

Study of yeast biocatalytic activity on grape aroma compounds

Many volatile compounds of different chemical/biochemical origin contribute to wine aroma. Certain key ‘varietal’ aroma compounds such as methoxypyrazines are formed in the grape and appear to be only scarcely influenced by fermentation.

Polysaccharide families of lyophilized extracts obtained from unfermented varietal grape pomaces

The recovery of bioactive compounds from grape and wine by-products is currently an important objective for revaluation and sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds. The aim of this study was to evaluate the polysaccharide (PS) composition of extracts obtained from pomaces of different white and red grape varieties of Castilla y León. Grape pomaces were obtained after the pressing in the winemaking process.

Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Sulfur dioxide (SO2) is used in winemaking due of its antioxidant, antioxydasic and antiseptic properties. Excessive amount of SO2 can negatively impact wine sensory perception and be detrimental for health. Agri-food industries are more transparent towards consumers concerning addition of sulfites, and oenology is no exception in this clairvoyance. As a consequence, the increase of consumers preference for wine with low or absent of sulfites addition is notorious. In this context, the impact of low/zero sulfites winemaking process on the microbial community should be evaluated. Moreover, microbial agents corresponding to bioprotective cultures represent a growing interest as an alternative to sulfites preservation in the early stages of vinification. However, scientific studies conducted to demonstrate their real effect are almost rare.

Understanding the onset of systemic infection of red blotch virus and phenotypic studies of grapevines expressing a red blotch virus infectious clone

Context and purpose of the study. Red Blotch disease, an affliction caused by the Grapevine red blotch-associated virus (GRBaV), represents a formidable challenge for grape growers and winemakers in prominent viticultural regions around the world.

Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of quercus alba oak barrels from different forest on the volatile composition of Tempranillo wines

Effect of quercus alba oak barrels from different forest on the volatile composition of Tempranillo wines

Abstract

Content of the article

References

Section for all references

DOI:

Publication date: September 14, 2021

Issue: (ex: Issue: Terclim 2023)

Type: typeofpublication

Authors

author1, author2, author3

Presenting author

Description

List of affiliations ¹ ² ³

Contact the author

Email address (with mailto: link)

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

Citation

Related articles…

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.

Embracing innovation for a future-ready wine industry: insights from Moldova’s AI-powered pilot project

In 2023–2024, the Republic of Moldova launched its first AI-powered wine pilot, integrating artificial intelligence into the vitivinicultural value chain.

MicrobiomeSupport: Towards coordinated microbiome R&I activities in the food system to support (EU and) international bioeconomy goals

Microbiomes have crucial roles in maintaining life on Earth, and their functions drive human, animal, plant and environmental health. The microbiome research landscape is developing rapidly and is performed in many different science fields using similar concepts but mostly one (eco)system at-a-time. Thus, we are only starting to unravel and understand the interconnectedness of microbiomes across the (eco)systems.