Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of quercus alba oak barrels from different forest on the volatile composition of Tempranillo wines

Effect of quercus alba oak barrels from different forest on the volatile composition of Tempranillo wines

Abstract

AIM: The species and origin used for red wine oak aging determines the physiological composition of the wood and thus the finished wines. In America, oak is grown primarily in the states of Virginia, Missouri, Kentucky, Oregon, Ohio, Minnesota, Wisconsin and California. The aim of this study is to analyze how the choice of barrels made with Quercus Alba oak from different geographic areas of the United States (Missouri, Kentucky, Ohio and Pennsylvania) influences the volatile composition of the Tempranillo wines.

METHODS: In this study, three different Tempranillo wines were aged for 6 months in new 225-liter American oak barrels (medium toast degree) from different forest of the United States: Missouri, Kentucky, Ohio and Pennsylvania. These barrels were made by the Toneleria Murua in 2018 and the experiences were carried out in three wineries of the D.O.Ca Rioja. Samples were taken when wine was introduced into the barrel, and after 6 months of aging. The volatile compounds of the wines were quantified by gas chromatography with a mass detector (GC-MS) after liquid-liquid extraction of the volatile fraction as described by Oliveira et al. (2008).

RESULTS: The different oak origins did not affect the total content of the volatile families of C6 alcohols, acetates, volatile acids, lactones, carbonyl compounds and volatile phenols. On the contrary, the wines aged on oak from Pennsylvania showed significantly higher values of higher alcohols and ethyl esters. Regarding the individual compounds, wines aged on Pennsylvania barrels showed higher concentrations of whisky lactones. 

CONCLUSIONS

The results obtained in the present study could help for selecting the oak origin that best suited to the different wines.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Zhao Feng

Institute of Grapevine and Wine Sciences (ICVV), Logroño, Spain,Leticia MARTÍNEZ-LAPUENTE, Institute of Grapevine and Wine Sciences (ICVV), Logroño, Spain  Zenaida GUADALUPE, Institute of Grapevine and Wine Sciences (ICVV), Logroño, Spain  Belén AYESTARÁN, Institute of Grapevine and Wine Sciences (ICVV), Logroño, Spain

CONTACT THE AUTHOR

Keywords

oak in wine aging, origin, aromatic compounds

Citation

Related articles…

Adaptation and resilience of scions and rootstocks to water constraint? It’s complicated and requires an integrated approach

The ability, and the underlying mechanisms of grapevines to cope with and adapt to recurring water constraints, are the focuses of this study.

The role of soil water holding capacity and plant water relations in zone/terroir expression

The spatial variability in soil type and depth and water holding capacity is very high in many viticultural regions of the world. Differences in rooting depths and water extraction profiles and their seasonal dynamics add additional variability and it is extremely difficult to deduct direct causal relationships between these factors and fruit

Extension to the Saumurois-Touraine area of an Anjou-originated method for the characterisation of the viticultural terroirs. (Loire Valley, France)

En Anjou, une méthode de caractérisation des terroirs viticoles a été développée. Elle utilise un modèle de terrain basé sur la profondeur de sol et son degré d’argilisation. Le modèle concerne des terrains issus principalement de roches mères métamorphiques et éruptives du Massif Armoricain. Cet outil de caractérisation des terroirs viticoles nécessite d’être adapté lorsqu’il s’agit d’ensembles géologiques très différents, en particulier sur sols d’apport et de roches mères tendres et poreuses du Bassin Parisien. Une meilleure compréhension de la réserve hydrique des sols apparaît être un critère important de l’interaction entre le milieu et la plante.

Vineyards and clay minerals: multi-technique analytical approach and correlations with soil properties

Purpose of this research is to quantitatively assess the mineral component of vineyard soils, with particular attention to the mineralogical analysis of clays, which represent an element of high importance in the vineyard culture as well as in general agriculture. An X-ray diffraction (XRD) / thermogravimetric (TG) multi-technique analytical approach was developed, tested on soil samples taken from vineyards around the world. This codified analytical procedure was necessary to obtain precise qualitative and quantitative mineralogical data, globally comparable to distinguish the geopedological identity of the vineyards. Soil samples from vineyards of various locations were analysed, in very different geological conditions. The bulk-rock quantitative phase analysis (QPA) was obtained by the Rietveld method while the detailed composition of the clay-sized fraction was determined by modelling of the oriented X-ray diffraction patterns. The research provided a precise classification of the mineral component of soils, distinguishing the mineral phases of the clays and the so-called mixed-layer clay minerals. We found that the content in mixed layers can be directly correlated with the water retention and the cation exchange capacity ​​of the soil, while the presence of other clayey minerals and phyllosilicates in this research did not affect this CEC parameter, which codes the fertility level of the soils. The study demonstrates that terroir, in particular soils formed in complex or very different geological conditions, can only be effectively interpreted by properly analysing its mineral phases, in particular the mixed-layer clay component. These are characteristic abiotic ecological indicators, which may have specific eco-physiological influences on the plant.

Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Malolactic fermentation (MLF) is a secondary wine fermentation conducted by lactic acid bacteria (LAB). This fermentation is important in winemaking as it deacidifies the wine, converting L-malic acid into L-lactic acid and carbon dioxide, and it contributes to microbial stability. Wine pH is highly selective, and at pH below 3.5 generally only strains of O. oeni can survive and express malolactic activity, while under more favorable growth conditions above pH 3.5, species of Lactobacillus and Pediococcus may conduct the MLF. Among the LAB species Lactiplantibacillus plantarum strains have shown most interesting results under hot climate conditions, not only for their capacity to induce MLF, but also for their homo-fermentative properties towards hexose sugars, which makes them suitable for induction of MLF in high pH and high alcohol wines, when inoculated at the beginning of alcoholic fermentation.

Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of quercus alba oak barrels from different forest on the volatile composition of Tempranillo wines

Effect of quercus alba oak barrels from different forest on the volatile composition of Tempranillo wines

Abstract

Content of the article

References

Section for all references

DOI:

Publication date: September 14, 2021

Issue: (ex: Issue: Terclim 2023)

Type: typeofpublication

Authors

author1, author2, author3

Presenting author

Description

List of affiliations ¹ ² ³

Contact the author

Email address (with mailto: link)

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

Citation

Related articles…

Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

The barrel-making process is widely recognized as a crucial practice that affects the composition of barrel-aged wine. After the drying process, the staves are considered ready for barrel assembly, which includes the processes of bending and toasting the barrel structure. Toasting is considered one of the most critical stages in determining the physical and chemical composition of the staves, which can influence the chemical and sensory composition of the wine aged in barrels made from them [1].

Evaluation of the efficiency of dialysis membranes in the wine dealcoholization process

The global wine production is continuously evolving to meet the new demands and preferences of consumers. in this evolving scenario, it’s important to determine which trends will be short-lived and which will remain over time. The promotion of healthier habits has encouraged consumers to try to find alternatives with low or no alcohol content. The challenge for the industry is to produce an alcohol-free wine that retains the familiar aromas and mouthfeel of traditional wine but without alcohol. Ethanol is the most abundant compound in wine, excluding water.

Untangling belowground response of grapevines to cover crop competition

Cover crops are planted in vineyards for multiple benefits including soil conservation, weed management, regulation of grapevine vegetative growth

Simultaneous determination of ethanol and methanol in wines using FTIR and PLS regression

Wine is a complex hydroalcoholic solution, with ethanol levels serving as a critical quality parameter.

Ripening characterization and modelling of Listan negro grape in Spain using a regression analysis

The professional winegrower usually selects the harvest date considering several elements, such as the vine stem and berry colour, the flavour, appearance and grain elasticity. Nowadays these elements have turned old fashioned.