Zoning of the Veneto region areas with Denomination of origin

Abstract

To characterize in depth the enological productions according to the origin territories and to provide modern tools for the qualitative raising of the assorted typologies of wine produced, Veneto Agricoltura (the regional agency for the agriculture, forestry and food industry development), the Regional Government of Veneto (north-eastern Italy) and various Consortia of Producers have undertaken since 2002 a systematic classification of the viticultural territories by agro-ecological zoning to achieve a strategic project aimed to set Veneto as the first Italian region to have completed in a systematic and scientifically rigorous way the zoning of most of its Denomination of Origin areas. In denominations such as Bardolino (VR), Breganze (VI), Colli Berici (VI) and Lison-Pramaggiore (VE) the program of study has come to an end with the year 2006. In other areas the jobs foresee a further year of investigation as for Arcole (VR), Lessini Durello (VR-VI) and Prosecco di Conegliano-Valdobbiadene (TV), while for the consortia of Bianco di Custoza (VR), Montello e Colli Asolani (TV), Terradeiforti (VR) and Valpolicella (VR) the studies of characterization will finish in 2008. For the denomination Soave (VR) a study is deepening the results of a previously concluded zoning project including Colli Euganei (PD) area. The first results underline the complexity of the viticultural models of the Veneto region, with a very wide and diversified ampelographic base both for the international and autochthonous varieties, and with territories that range from the lake and alluvial plains to the high hills. This complex pattern has to be interpreted to provide technical indications to the operators of the whole viticultural sector.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Antonio DE ZANCHE (1), Luca TONINATO (2), Diego TOMASI (3), Osvaldo FAILLA (4), Lucio BRANCADORO (4) and Attilio SCIENZA (4)

(1) VENETO AGRICOLTURA, viale dell’Università 14, 35020 Legnaro (PD), Italie
(2) AGER SC, via Druso 10, 20133 Milano, Italie
(3) CRA-Istituto sperimentale per la viticoltura, viale XVIII Aprile n.26, 31015 Conegliano (TV), Italie
(4) Dipartimento di Produzione Vegetale, Università di Milano, Via Celoria 2, 20133 Milano, Italie

Contact the author

Keywords

zoning, veneto, terroir

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Investigating the role of endophytes in enhancing grapevine resilience to drought

Grapevine is a crop of great economic importance for several countries. The intensification of grapevine production has mostly been sustained by the increasing use of water resources at the expense of the environmental water balance. Moreover, in the last decades, climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile both ecologically and economically. Recently, many research groups have highlighted the important role of endophytes in facilitating plant growth under optimal or stressful conditions. Within the framework of the PRIMA project, we aim to investigate the possible exploitation of the natural endophyte biodiversity as a sustainable tool to make grapevine plants more resilient to water deficit environmental conditions.

Budburst delay and berry ripening after vegetal oil application in Austria

Occurrence of freezing temperatures in early spring when grapevine shoots are developing is termed late frost in viticulture. Young green tissues are very sensible to temperatures below zero and damages often lead to important yield and quality losses such as the case in Europe in 2017. An indirect method to avoid late frost damage in vineyards consist in delaying the budburst. Previous research reported similar effects by applying vegetal oil on dormant buds. Here, we tested the application of rapeseed vegetal oil during late winter to delay the budburst on two V.vinifera cultivars of interest in Austria, Grüner Veltliner (GV) and Zweigelt (ZW).

Breeding grapevines for disease and low temperature tolerance: the U.S. perspective

Most grape scion cultivars grown around the world are derived from a single species, Vitis vinifera. Yet, the proportion of interspecific hybrids is increasing for a variety of reasons, including resistance to abiotic stresses such as low temperatures; societal, economic and environmental pressures to reduce pesticide usage; and to add a greater range of flavors to new table grape cultivars.

Copper contamination in vineyard soils of Bordeaux: spatial risk assessment for the replanting of vines and crops

Copper (Cu) is widely and historically used in viticulture as a fungicide against mildew. Cu has a strong affinity for soil organic matter and accumulates in topsoil horizons. Thus, Cu may negatively affect soil organisms and plants, consequently reducing soil fertility and productivity. The Bordeaux vineyards have the largest vineyard surfaces (26%) within French controlled appellation and a great proportion of French wine production (around 5 million hl per year). Considering the local context of vineyard surfaces decreasing (vine uprooting) and possible new crop plantation, the issue of Cu potential toxicity rises. Therefore, the aims of this work are firstly to evaluate the Cu contamination in vineyard soils of Bordeaux, secondly to produce a risk assessment map for new vine or crop plantation. We used soil analyses from several local studies to build a database with 4496 soil horizon samples. The database was enhanced by means of pedotransfer functions in order to estimate the bioaccessible (EDTA-extractable) Cu in soils of samples without measurements. From this database, 1797 georeferenced samples with CuEDTA concentrations in the topsoil (0-50 cm depth) were used for kriging interpolation in order to produce the spatial distribution map of CuEDTA in vineyard soils. Then, the spatial distribution of Cu was crossed with vine uprooting surfaces and municipality boundaries. CuEDTAconcentrations ranged from 0.52 to 459 mg/kg and showed clear anomalies. Our results from spatial analysis showed that almost 50% of vineyard soil surfaces have CuEDTA concentrations higher than 30 mg/kg (moderate risk for new plantation) and 20% with concentrations higher than 50 mg/kg (high risk for new plantation). A decision-support map based on municipalities was realised to provide a simple tool to stakeholders concerned by land use management.

Exploring non-Saccharomyces wine yeasts native from Castilla-La Mancha (Spain) to enhance bioprotection and quality of wines

The current tendency to reduce SO2 in winemaking, due to its adverse effects in sensitive individuals [1], has led to the development of new techniques to mitigate SO2 absence and to exert the same antimicrobial and antioxidant effects.