terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of heat and water stress on grapevine health: primary and secondary metabolism

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Abstract

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated1. Likewise, to endure and adjust to water deficits, plants regulate water loss by decreasing stomatal conductance (gs)2,3. In this study, we aimed to investigate how the combination of drought and heat stresses affects grapevine leaf physiology and secondary metabolism. To mimic our current climate change scenario, we induced stressed leaves to a 0.15 < gs < 0.05 mol H2O m-2s-1 range followed by a two-day heatwave where the mean temperature was elevated to +6 ±2.4SD oC compared to control treatment 27 ±3.7SD oC. Further, we explored the metabolic response of grapevine leaves to the multi-stress by detecting and quantifying (through target-metabolomics analysis) anticipated changes in phenolic acids, flavonoids, and stilbenes. The premilitary analysis does not show statistical differences when comparing the stressed leaves with the control. Taken together these results allow us to better understand the mechanisms of resilience to multi-stress and predict how grapevines and vineyards will respond to current climate change.

  1. Taiz, L., Zeige, E., Moller, I. & Murphy, A. Plant physiology and development. (Sinauer Associates Inc., 2015).
  2. Jones, H. G. Stomatal control of photosynthesis and transpiration. Journal of experimental botany 387–398 (1998).
  3. Medrano, H. Regulation of Photosynthesis of C3 Plants in Response to Progressive Drought: Stomatal Conductance as a Reference Parameter. Annals of Botany 89, 895–905 (2002).

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Ana Clara Fanton1*, Stéphanie Cluzet2, Gregory Gambetta3

1 INRAE-Bordeaux, Villenave d’Ornon 33882, France
2 Université de Bordeaux, Villenave d’Ornon, France

3 Bordeaux-Sciences Agro, Villenave d’Ornon France

Contact the author*

Keywords

climate change, grapevine metabolome, viticulture, stress-combination

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).