terclim by ICS banner
IVES 9 IVES Conference Series 9 SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Abstract

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are ex-posed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity. The sole effect of temperature was investigated on well-irrigated potted Shiraz grapevines grown in a glasshouse, where either the whole vine or bunches-only were heated using fans. For both experiments, berries were sampled at harvest, peeled, ground and total flavonoids were extracted using 60% acetone [2]. Two additional assays evaluated the potential temperature impact on subsequent wine composition using wine-like extraction (15% ethanol) [3] or micro-scale winemaking. Detailed tannin composition was primarily determined by LC-MS/MS after phloroglucinolysis [2], with complementary total tannin concentration (methyl cellulose precipitable assay). Secondary metabolites such as phenolic acid and anthocyanins were also analyzed.

The present work showed that short spells of high temperature may not impact on skin and seed tannin extractability when assessed on visually undamaged berries by harvest. Indeed, while total skin tannin concentrations, extracted with 60% acetone, were clearly reduced by a rise of temperature around véraison, skin extractable tannin (15% ethanol) and seed tannin concentrations were not impacted. In damaged berries at harvest, skin tannins were dramatically reduced while seed tannins were mostly preserved. Wine quality, made with a mix of heat-damaged and undamaged berries, was significantly reduced when about 20% (by mass) of the berries were visually damaged and necrotic, corresponding to about 50% of damaged berries (in number). Maintaining wine quality under a changing climate with more frequent extreme events leading to heat stress and/or water stress is challenging. However, this study showed that the impact of heatwaves in the vineyard may be compensated by a better extraction during winemaking and require further investigations at winery scales.

 

1. Gouot, J. C., Smith, J. P., Holzapfel, B. P., Walker, A. R., & Barril, C. (2019d). Grape berry flavonoids: a review of their biochemical responses to high and extreme high temperatures. Journal of Experimental Botany, 70(2), 397-423
2. Pinasseau, L., Verbaere, A., Roques, M., Meudec, E., Vallverdú-Queralt, A., Terrier, N., Boulet, J.-C., Cheynier, V., & Sommerer, N. (2016). A fast and robust UHPLC-MRM-MS method to characterize and quantify grape skin tannins after chemical depolymerization. Molecules, 21(10), 1409.
3. Bindon, K. A., Kassara, S., & Smith, P. A. (2017). Towards a model of grape tannin extraction under wine-like conditions: the role of suspended mesocarp material and anthocyanin concentration. Australian Journal of Grape and Wine Research, 23(1), 22-32 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Julia GOUOT1,2, Jason SMITH1,4, Bruno HOLZAPFEL5, Celia BARRIL1,3

1. School of Agricultural, Environmental and Veterinary Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
2. Current address : Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
3. Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
4. New South Wales Department of Primary Industries, Orange, New South Wales, 2800, Australia
5. Wagga Wagga Agriculture Institute, New South Wales Department of Primary Industries, Wagga Wagga, NSW 2650, Australia

Contact the author*

Keywords

Extractability, High temperature, Flavonoids, Tannins

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.