Fully automated non-targeted GC-MS data analysis

Abstract

Non-targeted analysis is applied in many different domains of analytical chemistry such as metabolomics, environmental and food analysis. In contrast to targeted analysis, non-targeted approaches take information of known and unknown compounds into account, are inherently more comprehensive and give a more holistic representation of the sample composition. 

Besides chromatographic techniques coupled to high resolution mass spectrometry such as LC-HRMS, gas chromatography with unit resolution mass spectrometry is still regularly utilized for non-targeted profiling or fingerprinting. This is mainly due to high separation power of GC and a wide availability and low costs of quadrupole mass spectrometers. 

Although several non-targeted approaches have been developed, data processing still remains a serious bottleneck. Baseline correction, feature detection, and retention time alignment can be prone to errors and time-consuming manual corrections are often necessary. We therefore developed an automated strategy to non-targeted GC-MS data avoiding feature detection and retention time alignment. The novel automated approach includes segmentation of chromatograms along the retention time axis, multiway decomposition of transformed segments followed by a supervised machine learning pipeline based on gradient boosted tree classification on the decomposed tensor [1, 2]. 

In order to make this novel data analysis strategy available to scientists without programming background, we developed a convenient browser based application. For the here presented interactive browser application the open source Python packages Bokeh and HoloViews were used. The application will be online freely available soon. 

[1] J. Vestner, G. de Revel, S. Krieger-Weber, D. Rauhut, M. du Toit, A. de Villiers, Toward automated chromatographic fingerprinting: A non-alignment approach to gas chromatography mass spectrometry data. Acta Chimica Acta 911 (2016) 42-58 
[2] K. Sirén, U. Fischer, J. Vestner, Automated supervised learning pipeline for non-targeted GC-MS data analysis. Analytica Chimica Acta: X 1 (2019) 100005

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Jochen Vestner, Kimmo Sirén, Pierre Le Brun, Ulrich Fischer

Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, D-67435 Neustadt, Germany
Institut National Supérieur des Sciences Agronomiques de l’Alimentation et de l’ Environnement, Agrosup Dijon, 6 boulevard Docteur Petitjean, 21000 Dijon, France
Department of Chemistry, University of Kaiserslautern, Erwin-Schroedinger-Strasse 52, D-67663 Kaiserslautern

Contact the author

Keywords

metabolomics, non-targeted, GC-MS, exploratory data analysis 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Optimization of a tool to determine the oxygen avidity of a wine through the kinetics of consumption by its phenolic and aromatic fractions (PAFs)

Wine oxidation phenomena during the different processes of winemaking, aging and storage are closely related to the presence of oxygen and to the wine’s capacity for consumption.

Unravel the underlying mechanisms of delaying ripening techniques in grapevine

In a scenario of changing climate conditions, grapevine is significantly affected at multiple levels. Advancements in phenology and berry ripening, however, are the major dynamics of the generalized increase in average temperature and evaporative demand, negatively affecting berry quality and productivity. The aim of this work was to unravel the underlying mechanisms of bunch-zone auxin application (NAA; 1-Naphthaleneacetic acid) and source-limiting canopy management approaches in delaying berry ripening. In randomized block design experiments, control vines were compared to vines treated with NAA, subjected to apical-to-bunch defoliation or antitranspirant application (n=10-to-42 plants per treatment).

Adapting the vineyard to climate change in warm climate regions with cultural practices

Since the 1980s global regime shift, grape growers have been steadily adapting to a changing climate. These adaptations have preserved the region-climate-cultivar rapports that have established the global trade of wine with lucrative economic benefits since the middle of 17th century. The advent of using fractions of crop and actual evapotranspiration replacement in vineyards with the use of supplemental irrigation has furthered the adaptation of wine grape cultivation. The shift in trellis systems, as well as pruning methods from positioned shoot systems to sprawling canopies, as well as adapting the bearing surface from head-trained, cane-pruned to cordon-trained, spur-pruned systems have also aided in the adaptation of grapevine to warmer temperatures. In warm climates, the use of shade cloth or over-head shade films not only have aided in arresting the damage of heat waves, but also identified opportunities to reduce the evapotranspiration from vineyards, reducing environmental footprint of vineyard. Our increase in knowledge on how best to understand the response of grapevine to climate change was aided with the identification of solar radiation exposure biomarker that is now used for phenotyping cultivars in their adaptability to harsh environments. Using fruit-based metrics such as sugar-flavonoid relationships were shown to be better indicators of losses in berry integrity associated with a warming climate, rather than solely focusing on region-climate-cultivar rapports. The resilience of wine grape was further enhanced by exploitation of rootstock × scion combinations that can resist untoward droughts and warm temperatures by making more resilient grapevine combinations. Our understanding of soil-plant-atmosphere continuum in the vineyard has increased within the last 50 years in such a manner that growers are able to use no-till systems with the aid of arbuscular mycorrhiza fungi inoculation with permanent cover cropping making the vineyard more resilient to droughts and heat waves. In premium wine grape regions viticulture has successfully adapted to a rapidly changing climate thus far, but berry based metrics are raising a concern that we may be approaching a tipping point.

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

Red wine astringency and the influence of wine–saliva aggregates on oral lubrication

Oral tribology receives growing attention in the field of food sciences as it offers great opportunities to establish correlations between physical parameters, such as the coefficient of friction, and sensory perceptions in the human mouth.