Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Elicitors application in two maturation stages of Vitis vinifera L. cv Monastrell: changes on the skin cell walls

Elicitors application in two maturation stages of Vitis vinifera L. cv Monastrell: changes on the skin cell walls

Abstract

AIM: In a recent study, it was determined that the mid-ripening period is the most suitable for the application of methyl jasmonate (MeJ), benzothiadiazole BTH and MeJ+BTH on Monastrell grapes, to favor maximum accumulation of phenolic compounds at the time of harvest. However, the increase in the anthocyanin content of grapes was not reflected in all the wines (Paladines-Quezada et al., 2021). For this reason, the aim of this work was to evaluate whether the application of two pre-harvest elicitors, MeJ and BTH on Monastrell grapes during two maturation stages, affects the composition and structure of their skin cell walls.

METHODS: This study was conducted for two years (2016 and 2017) on Vitis vinifera L. cv Monastrell, located in Jumilla (southeast Spain). A foliar application was carried out with a water suspension of 2 elicitors: (MeJ) 10 mM; (BTH) 0.3 mM, and a mixture of both. The treatments were applied at different timings of ripening (at veraison and mid-ripening). For all treatments, a second application was performed 7 days after the first application. The composition of the berry skin cell wall was analyzed.

RESULTS: MeJ and MeJ+BTH treatments applied at veraison had the greatest influence on the composition of the skin cell walls. They decreased the concentration of hemicellulose and pectic derivatives, and increased the concentration of lignin, proteins and phenols. On the other hand, BTH applied at veraison and mid-ripening was the only treatment that increased the concentration of cellulose in the skin cell walls.

CONCLUSIONS:

MeJ and MeJ+BTH treatments increased the concentration of the main components involved in cell wall strengthening. This fact can contribute to resistance to fungal attacks, but it can make it difficult to extract polyphenols from the skin during the maceration process

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diego F., Paladines-Quezada ,José I. FERNÁNDEZ-FERNÁNDEZ, IMIDA Juan D. MORENO-OLIVARES, IMIDA Juan A. BLEDA-SÁNCHEZ, IMIDA Rocío GIL-MUÑOZ

 Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Ctra. La Alberca s/n, 30150. Murcia-Spain

Contact the author

Keywords

Methyl jasmonate, benzothiadiazole, veraison, mid-ripening

Citation

Related articles…

Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Œnococcus oeni is a wine-associated lactic acid bacterium performs the malolactic fermentation, which improves the taste and aromatic complexity of many wine.

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

Rootstocks and climate change: adding up means learning faster

In this video recording of the IVES science meeting 2025, Gonzaga Santesteban (Public University of Navarra, Pamplona, Spain) speaks about rootstocks, climate change and meta-analysis. This presentation is based on an original article accessible for free on OENO One.

Assessing the feasibility of direct injection for pesticide residue analysis in grape juice by liquid chromatography/triple quadrupole mass spectrometry

In Brazil, the regulation of pesticide residues is guided by the National Health Surveillance Agency (ANVISA) and the Ministry of Agriculture and Livestock (MAPA), emphasizing the importance of monitoring pesticide levels in agricultural products to protect consumer health.

Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

The choice of sites for viticulture depends on natural environmental factors, particularly climate, as grapevines have specific climatic requirements for optimum physiological performance and berry quality achievement. In the Stellenbosch wine-producing region, the complex topography and the proximity of the ocean create a variety of topoclimates resulting in different growth conditions for vines within short distances.