Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Preliminary results on the effect of different organic mulching on wine polyphenol content

Preliminary results on the effect of different organic mulching on wine polyphenol content

Abstract

AIM: Soil mulching is an interesting strategy to reduce soil evaporation, assist in weed control, improve soil structure and organic content, increase soil water infiltration, and decrease diurnal temperature fluctuations. However, little information is known about the influence of soil mulching on grape and wine phenolic composition. For this reason, the study aimed to analyze the effect of different mulchings and soil management tecnhiques on the wine phenolic profile (phenolic acids, flavanols, flavonols, stilbenes, and anthocyanins) on ‘Tempranillo’ grapevine (Vitis vinifera L.).

METHODOLOGY: The research was carried out in two different fields, one located in Logroño and the other in Aldeanueva de Ebro (La Rioja, Spain), each one characterized by different soil conditions, weather and crop management techniques (conventional in Aldeanueva de Ebro and ecological in Logroño). In both sites, five diferent mulching techniques were applied in the row: grapevine pruning debris (GPD), spent mushroom compost (SPCH), straw (S), interow (I) and herbicide (H) treatment. Each treatment was performed in triplicate (n=3) and each replicate was vinified separately. Wine phenolic composition was analyzed by UHPLC-DAD-ESI/APCI-MS/MS.

RESULTS: Overall, in this first year of the study, mulching treatments led to only few differences between wines and the phenolic composition of the treatments was not the same across the fields. In Logroño, wines from the I treatment had higher concentration of flavonols than wines from H, while no significant differences were observed between wines for the remaining parameters. In Aldeanueva de Ebro, no significant differences were observed between treatments for any parameter, although wines from SPCH treatment tended to have fewer polyphenols. Although no statistical differences were observed between treatments, it is interesting to see that in Aldeanueva, phenolic composition increased for all groups (fewer stilbenes). Indeed it is necessary to investigate more deeply this behavior. Among other factors, this differences between fields could be due to different crop management tecnhiques.

CONCLUSIONS

In conclusion, mulching treatments had no significant effect on wine phenolic composition in the first year of the study. However, mulching treatments do not have immediate effect and probably their influence could become more significant in the following years. Therefore, further research should be performed in order to assess the long-term effects of these treatments on wine phenolic composition.

 

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Andreu Mairata

Department of Viticulture, Institute of Vine and Wine Sciences (Gobierno de la Rioja, CSIC, Universidad de La Rioja), Logroño, La Rioja, Spain),Javier, PORTU. Institute of Vine and Wine Sciences (La Rioja, Spain) Juana, MARTÍNEZ. Institute of Vine and Wine Sciences (La Rioja, Spain) Luis, RIVACOBA. Institute of Vine and Wine Sciences (La Rioja, Spain) Enrique, GARCÍA-ESCUDERO. Institute of Vine and Wine Sciences (La Rioja, Spain) Alicia, POU. Institute of Vine and Wine Sciences (La Rioja, Spain) David, LABARGA. Institute of Vine and Wine Sciences (La Rioja, Spain)

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Citation

Related articles…

Sustainability in the winery sector: A European study

This paper investigates sustainability in European wineries. The growing body of literature on the subject of sustainability underlines the increasing attention on the environmental and social impacts of intensive and irresponsible wine production.

Assessing the effect of oak derived aromas on mouthfeel perception in Chardonnay wine

Mouthfeel is an important quality parameter for Chardonnay wines, particularly those aged in oak. While research on mouthfeel has traditionally focused on the impact of non-aromatic compounds, the role of aroma compounds has largely been over looked. However, in wine as well as other food interactions between retronasal aroma and mouthfeel have been noted. The goal of this research was to investigate the impact of wine aroma on the perception of mouthfeel. Because of the importance of oak aging in the development of Chardonnay mouthfeel, the impact of oak aromas on perceived mouthfeel was explored. Aroma compounds associated with oak (ethyl palmitate, eugenol, furfural, isoeugenol, syringaldehyde, vanillin and whiskey lactone) were added to two different Chardonnay wines; one with no oak influence and one fermented in neutral oak. Low and high concentrations of the compounds were added based on concentrations typically found in barrel aged Chardonnay wine.

Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

The vineyard world is faced to a lot of fungal diseases. Grapevine Trunk Diseases (GTD) are some of the major. After exhibiting chronical foliar symptoms, grapevines can die by apoplexy within only few days. A range species of fungi was described to be associated with the apparition of early symptoms of GTD. It is well known that ozone dissolved into water is a powerful disinfectant with no remanence. The main goal of this study was to test the efficiency of this process on different fungal species associated with GTD in vitro and in planta conditions.

Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Water status impact in viticulture has been widely explored, as it strongly affects grapevine physiology and grape chemical composition. It is considered as a key component of vitivinicultural terroir. Most of the studies concerning grapevine water status have focused on either physiological traits, or berry compounds, or traits involved in wine quality. Here, the response of grapevine to water availability during the ripening period is assessed through non-targeted metabolomics analysis of grape berries by ultra-high resolution mass spectrometry. The grapevine water status has been assessed during 2 consecutive years (2019 & 2020), through carbon isotope discrimination on juices from berries collected at maturity (21.5 brix approx.) for 2 Vitis vinifera cv. Pinot noir (PN) and Chardonnay (CH). A total of 220 grape juices were collected from 5 countries worldwide (Italy; Argentina; France; Germany; Portugal). Measured δ13C (‰) varied from -28.73 to -22.6 for PN, and from -28.79 to -21.67 for CH. These results also clearly revealed higher water stress for the 2020 vintage. The same grape juices have been analysed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Liquid Chromatography coupled to Mass Spectrometry (LC-qTOF-MS), leading to the detection of up to 4500 CHONS containing elemental compositions, and thus likely tens of thousands of individual compounds, which include fatty acids, organic acids, peptides, phenolics, also with high levels of glycosylation. Multivariate statistical analysis revealed that up to 160 elemental compositions, covering the whole range of detected masses (100 –1000 m/z), were significantly correlated to the observed gradients of water status. Examples of chemical markers, which are representative of these complex fingerprints, include various derivatives of the known abscisic acid (ABA), such as phaesic acid or abscisic acid glucose ester, which are significantly correlated with higher water stress, regardless of the variety. Cultivar-specific behaviours could also be identified from these fingerprints. Our results provide an unprecedented representation of the metabolic diversity, which is involved in the water status regulation at the grape level, and which could contribute to a better knowledge of the grapevine mitigation strategy in a climate change context.

On-the-go resistivity sensors employment to support soil survey for precision viticulture

There is an increasing need in agriculture to adopt site-specific management (precision farming) because of economic and environmental pressures. Geophysical on-the-go sensors, such as the ARP (Automatic Resistivity Profiling) system, can effectively support soil survey by optimizing sampling density according to the spatial variability of apparent electrical resistivity (ER).