Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 A microwave digestion ICP-MS method for grapevine bark elemental profiling

A microwave digestion ICP-MS method for grapevine bark elemental profiling

Abstract

Aim: A rapid and reproducible microwave (MW)-assisted acid digestion protocol was developed to determine the elemental composition of grapevine bark samples using ICP-MS. A representative grapevine bark sample and a similar matrix Certified Reference Material (CRM) were used for method optimisation. The method was subsequently applied to a set of New Zealand vineyard grapevine bark samples consisting of seven different grape varieties.

Methods: A homogenous bark sample and a CRM (ERMCD281) were treated with 16 different acid combinations and microwave digestion settings prior to ICP-MS analysis. 54 chemical elements were measured in the samples. Calibration standards were prepared in matrix matched solutions from single elements standards (Inorganic Ventures, USA).

Results: The acid digestion combination of HNO3, H2O2, and HCl with a MW digestion of 15 minutes was shown to give optimal results. 48 elements could be measured in a representative grapevine bark sample using this procedure and 27 elements in a reference CRM sample. Ca was the most abundant element present in all grape variety bark samples.

Conclusions

A method was developed and validated for an MW digestion of grapevine bark samples using ICP-MS. The application of this new method showed that bark from different grape varieties varies in elemental composition within a vineyard site.

Acknowledgments

The authors wish to thank the Bragato Research Institute, New Zealand Winegrowers, and the Ministry of Business, Industry, and Employment (MBIE), for funding this work.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alexandra Lowrey 

University of Auckland, New Zealand,Bruno FEDRIZZI, University of Auckland Rebecca JELLEY, University of Auckland Stuart MORROW, University of Auckland

Contact the author

Keywords

icp-ms, grapevine bark, trace elements, microwave digestion

Citation

Related articles…

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

Identification of 4-hydroxy-2-nonenal, a gamma nonalactone precursor in must and wine from Bordeaux cultivars

Various molecular compounds are responsible for the complex mixture of fragrances that give wine its aroma. In particular, the ‘cooked fruit’ aroma found in red wines from hot and/or dry vintages or from the vinification of late harvested grapes has been intensively investigated in recent years. Lactones and especially γ-nonalactone were found to be responsible for the ‘cooked fruit’

Influence of short-time skin maceration combined with enzyme treatment on the volatile composition of musts from fresh and withered fiano winegrapes

AIM: The increasing market competitiveness is promoting the production of special dry wines with distinctive characteristics, obtained either from minor winegrape varieties and/or the inclusion of partially dehydrated grapes.

Application of remote and proximal sensors for precision vineyard management in Valpolicella

The integration of sensor systems in viticulture is significantly improving vineyard management by enabling faster, comprehensive crop data collection across the entire vineyard, supporting more informed viticultural decision-making, and as a result promoting sustainability.

Phenolic composition and physicochemical analysis of wines made with the syrah grape under double pruning in the Brazilian high-altitude cerrado

Wine growing has proven to be a development opportunity for agribusiness in several new regions of brazil, including the federal district. There are more than ten existing wineries, established in the last five years. Through the double pruning system, which consists of trimming the growing shoots in the summer and positioning the ripening of the fruits in a cooler period of the season, the grapes are sought to ripen more completely. The syrah variety has shown excellent adaptation to this cycle management model.