Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Abstract

AIM: Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].

METHODS: The aim of this study was to investigate the influence of four different pressures (2.5, 3.5, 4.5 and 5.5 MPa) and two temperature regimes (with and without cooling) on aroma profile of conventional and ecological Cabernet Sauvignon red wine during concentration by reverse osmosis. The reverse osmosis process was conducted on a plate-and-frame membrane filter Alfa Laval LabUnit M20, equipped with 6 composite RO98pHt membranes. The aroma compounds in initial wines and obtained retentates were analyzed on gas chromatograph with mass spectrometer. The solid-phase microextraction (SPME) method was used for sampling.

RESULTS: In the initial wines and their RO retentates, 45 aroma compounds were identified and divided into six groups: acids, alcohols, terpenes, carbonyl compounds, esters and volatile phenols. A certain loss of total aroma compounds was observed in conventional and ecological wine retentates, comparing to the corresponding initial wine. Higher working pressures (4.5 and 5.5 MPa) and the regime with cooling resulted in higher retention of total aroma compounds than the opposite processing parameters. Individual compounds retention depended also on their chemical properties and their interactions with the membrane surface. Reverse osmosis membranes proved to be highly permeable for acetic acid or undesirable 4-ethylphenol and 4-ethylguaiacol that made them applicable for their correction or removal. Initial wine composition influenced the retention of aroma compounds during reverse osmosis of red wines. Slightly higher retention of total acids, alcohols and terpenes was observed in conventional wine retentates than in the ecological one. The retention of carbonyl compounds, esters and volatile phenols was slightly higher during concentration of ecological wine than the conventional wine.

CONCLUSIONS:

The aroma profile of the wine retentate depends on initial wine aroma profile and applied processing parameters during reverse osmosis process (pressure, temperature, membrane type).

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ivana Ivić, Mirela, KOPJAR, Dubravko, PICHLER, W. Ina, ĆORKOVIĆ, Anita, PICHLER, 

Faculty of Food Technology in Osijek, Croatia, Water Supply—Osijek, Croatia  

Contact the author

Keywords

conventional and ecological cabernet sauvignon, reverse osmosis, aroma compounds, processing parameters, retention

Citation

Related articles…

Effects of abscisic acid treatment on Vitis vinifera L. Savvatiano and Mouchtaro grapes and wine characteristics

Grapes development is determined by grape cultivar and vineyard climatic conditions and consequently affecting the phenolic and aroma on grapes and wines. Abscisic Acid (ABA) plays a key role in the promotion of fruit ripening and fruit anthocyanin content. Herein, we report the impact of ABA to grape ripening and wine quality.

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².

Cartes thématiques: applications au vignoble champenois

Quel est l’intérêt des cartes en viticulture? Celles-ci répondent à plusieurs usages.
Formalisation au sein d’un référentiel codifié et normalisé de la connaissance relative au milieu, aux observations biologiques et aux pratiques culturales.

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

Simplifying the measurement of different forms of cu in wines and strategies for efficient removal

Copper (Cu) is known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. Recent work has shown that Cu exists predominantly in a sulfide-bound form, which may act as a potential source of sulfidic off-odours in wine and hence contribute to reductive flavours