Terroir 2010 banner
IVES 9 IVES Conference Series 9 Mathematical models of the dynamics of fermentation of wine yeasts under the influence of vitamins

Mathematical models of the dynamics of fermentation of wine yeasts under the influence of vitamins

Abstract

Biomass accumulation in yeast has been studied in this work in terms of their role in fermentation processes. So, biotin is involved in many reactions and nitrogen metabolism disorders, in protein biosynthesis and fatty acid synthesis. It is known that yeast cell is not capable to synthesize biotin, but it presence in the environment is unconditionally linked to production cost. Requirement for biotin yeast partially reduced in the presence of amino dicarboxylic environment. Effectiveness is increased under conditions of intense aeration, ascertaining the best results when additives order thousandths per liter of fermentation under anaerobic conditions (Banu, 2008, 2009).
Inositol (vitamin B9) is a derivative of cyclohexane polyol, which participate in lipid synthesis and especially phosphoglycerides.
Comparative studies have demonstrated their good role in fermentation processes and in particular to obtain yeast biomass with higher quality biotech.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Tita Ovidiu, Tusa Ciprian, Oprean Letitia, Radulescu Axenia, Tita Mihaela, Gaspar Eniko, Lengyel Ecaterina

Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Ioan Ratiu street no.7-9, Sibiu, Romania

Contact the author

Keywords

Yeast, inositol, Saccharomyces bayanus, biomass, fermentation, bioreactor

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Evaluation of viticultural measures to delay ripening of Vitis vinifera ‘Grüner Veltliner’

Context and purpose of the study. `Grüner Veltliner´ is the most important Austrian white quality wine variety, which is mainly used to produce primary fruity wines.

Effect of the plant sink/source balance on the chemical content of red table grapes (Vitis vinifera L.).

PPhloem transport of assimilates provides the materials needed for the growth and development of reproductive structures, storage and developing organs, and has long been recognized as a major determinant in crop yield.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.

Dual mode of action of grape cane extracts against Botrytis cinerea

Crude extracts of Vitis vinifera canes represent a natural source of stilbene compounds with well characterized antifungals properties. In our trials, exogenous application of a stilbene extract (SE) obtained from grape canes on grapevine leaves reduces the necrotic lesions caused by Botrytis cinerea