May 31, 2022 | IVES Conference Series, Session I – Oral presentations, Terclim 2022
One of the major issues for the wine sector is the impact of climate change linked to the increasing temperatures which affects physicochemical parameters of the grape varieties planted in Bordeaux vineyard and consequently, the quality of wine. In some varietals, the attenuation of their fresh fruity character is accompanied by the accentuation of dried-fruit notes [1]. As a new adaptive strategy on climate change, some winegrowers have initiated changes in the Bordeaux blend of vine varieties [2]. This study intends to explore the fruitiness in wines produced from grape varieties adapted to the future climate of Bordeaux. 10 commercial single–varietal wines from 2018 vintage made from the main grape varieties in the Bordeaux region (Cabernet franc, Cabernet-Sauvignon and Merlot) as well as from indigenous grape varieties from the Mediterranean basin, such as Cyprus (Yiannoudin), France (Syrah), Greece (Agiorgitiko and Xinomavro), Portugal (Touriga Nacional) and Spain (Garnacha and Tempranillo), were selected among 19 samples using sensory descriptive analyses. Both sensory and instrumental analyses were coupled, to investigate their fruity aroma expression. For sensory analysis, samples were prepared from wine, using a semi preparative HPLC method which preserves wine aroma and isolates fruity characteristics in 25 specific fractions [3,4]. Fractions of interest with intense fruity aromas were sensorially selected for each wine by a trained panel and mixed with ethanol and microfiltered water to obtain fruity aromatic reconstitutions (FAR) [5]. A free sorting task was applied to categorize FAR according to their similarities or dissimilarities, and different clusters were highlighted. Instrumental analysis of the different FAR and wines demonstrated variations in their molecular composition. Results obtained from sensory and gas chromatography analysis enrich the knowledge of the fruity expression of red wines from “new” grape varieties opening up new perspectives in wine technology, including blending, thus providing new tools for producers.
May 31, 2022 | IVES Conference Series, Session H – Posters, Terclim 2022
“Flavescence dorée” (FD) is a grapevine quarantine disease associated with phytoplasmas and transmitted to healthy plants by insect vectors, mainly Scaphoideus titanus. Infected plants usually develop symptoms of stunted growth, unripe cane wood, leaf rolling, leaf yellowing or reddening, and shrivelled berries. Since plants can remain symptomless up to four years, they may act as reservoirs of FD contributing to the spread of the disease. So far, conventional management strategies rely mainly on the insecticide treatments, uprooting of infected plants and use of phytoplasma-free propagation material. However, these strategies are costly and could have undesirable environmental impacts. Thus, the development of sustainable and noninvasive approaches for early detection of FD and its management are of great importance to reduce disease spread and select the best cultural practices and treatments. The present study aimed to evaluate if multispectral/hyperspectral technologies can be used to detect FD before the appearance of the first symptoms and if infected grapevines display a spectral imaging fingerprint. To that end, physiological parameters (leaf area, chlorophyll content and photosynthetic rate) were collected in concomitance to the measurements of plant reflectance (using both a portable apparatus and a remote sensing drone). Measurements were performed in two leaves of 8 healthy and 8 FD-infected grapevines, at four timepoints: before the development of disease symptoms (21st June); and after symptoms appearance (ii) at veraison (2nd August); at post-veraison (11th September); and at harvest (25th September). At all timepoints, FD infected plants revealed a significant decrease in the studied physiological parameters, with a positive correlation with drone imaging data and portable apparatus analyses. Moreover, spectra of either drone imaging and portable apparatus showed clear differences between healthy and FD-infected grapevines, validating multispectral/ hyperspectral technology as a potential tool for the early detection of FD or other grapevine-associated diseases.
May 31, 2022 | IVES Conference Series, Session F – Oral presentations 1/2, Terclim 2022
Trellis systems are selected in wine grape vineyards to mainly maximize vineyard yield and maintain berry quality. This study was conducted in 2020 and 2021 to evaluate six commonly utilized trellis systems including a vertical shoot positioning (VSP), two relaxed VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a guyot (GY), combined with three levels of irrigation regimes based on different crop evapotranspiration (ETc) replacements, including a 25% ETc, 50% ETc, and 100% ETc. The results indicated SH yielded the most fruits and accumulated the most total soluble solids (TSS) at harvest in 2020, however, it showed the lowest TSS in the second season. In 2020, SH and HQ showed higher concentrations in most of the anthocyanin derivatives compared to the VSPs. Similar comparisons were noticed in 2021 as well. SH and HQ also accumulated more flavonols in both years compared to other trellis systems. Overall, this study provides information on the efficacy of trellis systems on grapevine yield and berry flavonoid accumulation in a currently warming climate.
May 31, 2022 | IVES Conference Series, Session G – Oral presentations (1/2), Terclim 2022
With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.
May 31, 2022 | IVES Conference Series, Session D – Posters (2/2), Terclim 2022
Climate has a significant impact in the success of any agricultural system, with a direct influence on the crops suitability to a given region, interfering on yield and quality and also with the economic sustainability of the productive activity. In the Douro Demarcated Region (RDD), as in most regions of the Mediterranean climate, the scarce precipitation (33% has less than 600 mm per year), and your high variability, associated with high rates of evapotranspiration during the summer, is usually one of the fundamental factors that limit the grapevine development, as well as the production and quality of the harvest. Thus, facing the scenario in temperature changes for the next decades (1.5-2.5°C) and confirming the predictions of precipitation decreases and/or great variability in the occurrence of heat waves and intense rainfall, the consequences for slope stability in mountain viticulture and sustainability of all operations involved, are risks to be taken into account. In this way, a deepest and sustained knowledge regarding the adaptation measures to adverse environmental conditions is of a crucial importance, enabling a more efficient adaptation of plant growth conditions and the optimization of production and quality of the grapevines. The development of this work, carried out in two commercial vineyards, one located in Soutelo do Douro, São João da Pesqueira, Cima Corgo sub-region, and another located in Numão, Vila Nova de Foz Côa, Douro Superior sub-region, it seeks to establish a relationship between climatic elements and physiological, productive and qualitative parameters, as well as to evaluate the effectiveness of adaptation measures, including different types of deficit irrigation (2002-2019) and the application of shading nets (2019-2020) in the physiological, viticultural and oenological behavior in the Touriga Nacional and Moscatel Galego Branco varieties, respectively. The results showed that the application of deficit irrigation allowed to significantly reduce the impact of the adverse weather conditions at key moments in the development of the grapevine, particularly in the period immediately before veráison and maturation, reducing the negative effects on the physiological processes and productivity, without compromise the must quality parameters. On the other hand, the application of shading nets significantly reduced de leaves temperature, allowing to increase the water potential, stomatal conductance and photosynthetic rate of grapes, which was reflected in the yield increase in the 2nd year of the study. For the maturation indicators, higher levels of total acidity, malic acid and assimilable nitrogen were obtained. The last measure presents a huge potential, being essential to carry out more years of trials to obtain stronger conclusions in terms of production parameters, but also in characteristics as important as the grape ripening components and the organoleptic characteristics of wines.