WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Posters 9 Impact of toasting on oak wood aroma: creation of an oak wood aroma wheel

Impact of toasting on oak wood aroma: creation of an oak wood aroma wheel

Abstract

The impact of toasting process to produce aroma from oak wood intrinsic composition is well documented. It is admitted that such complexity contribute to the wine quality after barrel ageing. Despite our knowledge on the molecular identification of aroma impact compounds of oak wood, little research have been carried out, on a sensory level, on the aroma diversity of toasted oak wood. For this reason, this work aims at creating an aroma wheel to describe and categorize the complexity of aroma descriptors based on a lexical analysis. In a first experiment, a free association task was conducted to identify individual mental representations of oak wood samples. For that, a panel (13 persons from Seguin Moreau cooperage and wine makers) was selected to write down, via an online survey, the descriptors that come to mind to describe oak wood aroma according to a specific toasting intensity (non-toasted or toasted at 160 °C, 180 °C or 240 °C for 30 min). Data obtained were analyzed according to a semantic analysis to determine citation frequency of each descriptor. Synonyms or descriptors linked to the same lexical field were gathered, reducing the number of descriptors from 215 to 83. Citation frequencies were evaluated in order to identify the most relevant descriptors used by the panel (f>0.02). After that, a categorization of samples and descriptors was performed to highlight sensory boundaries among them. Samples categorization was performed by a correspondence analysis (AFC) applied to citation frequencies while words categorization was achieved by a sorting using a consensus approach. Finally, seven main descriptors were obtained, allowing distinguish oak wood samples depending on their toasting intensity: non-toasted oak wood was categorize with ‘fresh wood’ and ‘vegetable’ descriptors while highly toasted oak wood was categorize with ‘roasting’, ‘spices’ and ‘smoked’ descriptors, for example. Subsequently, a conventional profiling was performed by a trained panel (13 persons from the laboratory team) on oak wood samples (different toasting process). ANOVA analysis revealed the relevance of defined descriptors to describe oak wood aroma during its toasting. This work permits to purpose a visual tool to describe oak wood aroma. It provides specific terminology to describe the sensory changes during toasting process. This aroma wheel is intended to meet academic and professional needs for the quality assessment of oak wood aroma based on sensory analysis.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Marie Courregelongue, Marie Courregelongue, Alexandre Pons

Presenting author

Marie Courregelongue – UMR ŒNOLOGIE (OENO), ISVV, UMR 1366, Université de Bordeaux, INRAE, Bordeaux INP, Villenave d’Ornon, France & Tonnellerie Seguin Moreau, Merpins, France

Tonnellerie Seguin Moreau, Merpins, France | UMR ŒNOLOGIE (OENO), ISVV, UMR 1366, Université de Bordeaux, INRAE, Bordeaux INP, Villenave d’Ornon, France & Tonnellerie Seguin Moreau, Merpins, France

Contact the author

Keywords

oak wood, toasting process, sensory approach, aroma wheel

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

Application of nitrogen forms such as nitrate, urea, and amino acids effects on leaf and berry physiology and wine quality

Nitrogen (N) uptake by grapevine roots in forms like nitrate, ammonium, urea, or amino acids influences vegetative and generative growth, impacting grape quality and wine sensory profile. The study examined nitrogen’s influence on phenolic compounds in leaves, berries, and wine across different scales — hydroponics, soil culture, and vineyard trials. Nitrogen forms altered metabolite patterns in leaves and wine significantly, affecting aroma and flavor. Key nitrogen assimilation enzymes (NR, NiR, GS) in grapevine rootstocks responded to nitrogen forms and timing. Hydroponically grown rootstocks fertilized with various forms showed differences in enzyme expression and activity, suggesting rootstocks can assimilate amino acid glutamine (Gln).

Environmental influence on grape phenolic and aromatic compounds in a Nebbiolo selection (Vitis vinifera L.)

Nebbiolo (Vitis vinifera L.) is one of the most important wine red cultivar of North-west Italy. A better understanding of the complex relations among grape aromatic and phenolic maturity and environmental factors may strongly contribute to the improvement of the quality of Nebbiolo wines.

Text mining of wine reviews to investigate quality markers of ‘Nebbiolo’ wines from Valtellina

In Valtellina zone (north Italy), the winemaking of ‘Nebbiolo’ grapes leads to the production of two main wine types: classic red wines from fresh grapes, usually classified as Valtellina Superiore DOCG (mandatory oak aging) or Rosso di Valtellina DOC, and the Sforzato di Valtellina DOCG, which is produced using withered grapes according to traditional product specification and subjected to mandatory oak aging process. The withering process influences grape chemical composition and, in turn, the wine sensory profile, which is strongly linked to the wine quality and typicity perceived by consumers.

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).