terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Abstract

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]). The Projective Mapping (napping) sensory protocol and the RATA (rate-all-that-apply) method were used to provide rapid categorization and characterization of DRHGC and conventional wines using an internal panel of 19 assessors (aged 25-40 years old). Preliminary analytical results for red wines showed that diglucosylated and triglucosylated anthocyanins were most common, and they were present also as acetylated and p-coumaroylated esters. The profile of cyclic proanthocyanidins was investigated for the first time in PIWI wines, such us ‘Solaris’, ‘Bronner’, ‘Muskaris’, ‘Johanniter’, ‘Souvignier gris’, ‘Regent’, and ‘Cabernet Cortis’, and compared with conventional white and red wines.

The sensory attributes found in PIWI white wines were “tree fruit” (pear, green apple) in ‘Solaris’ and ‘Bronner’, “caramelized” (honey) and “floral” (rosewater) in ‘Muskaris’, “stone fruit” (peach) in ‘Johanniter’, and “woody” (oak and coffee) in ‘Souvignier gris’  In contrast, sensory attribute “vegetative” (green bell pepper) conventional wines was perceived more  in Pinot Blanc and Pinot Gris as conventional wines.

The combination of sensory evaluation, chemical analysis, and multivariate statistical methods provided a deeper and more complete understanding of the quality of the wines under investigation.

Acknowledgments: Wineries (Bolzano, Italy) are kindly acknowledged for providing the wines analyzed in this study.

References:

1)  Duley, G., et. al (2023). Oenological potential of wines produced from diseaseresistant grape cultivars. Compr. Rev. Food Sci. DOI 10.1111/1541-4337.13155

2)  De Rosso, et. al (2012). Study of anthocyanic profiles of twenty-one hybrid grape varieties by liquid chromatography and precursor-ion mass spectrometry. Anal. Chim. Acta., 732, 120-129. DOI 10.1016/j.aca.2011.10.045

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Adriana Teresa Ceci1,2, *, Edoardo Longo1,2, Gavin Duley1,2, Emanuele Boselli1,2

1Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100 Bolzano, Italy
2Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy

Contact the author*

Keywords

disease resistant hybrid grape cultivars, volatile compounds, phenolic profile, Projective Mapping

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).