GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Forcing vine regrowth in Vitis vinifera cv. Touriga nacional at Douro region

Forcing vine regrowth in Vitis vinifera cv. Touriga nacional at Douro region

Abstract

Context and purpose of the study ‐ Douro Region, characterized by a Mediterranean climate type and schist soils, is subjected to water and heat stresses conditions during summer. In some locations, the temperatures registered during berry maturation, lead to fruit ripen during warmer months, increasing the degradation of organic acids, tannins and phenolics that can negatively affect the quality of wines. Forcing vine regrowth is a new practice, being currently tested in Mediterranean countries, that aims to shift fruit ripening to cooler months of the year by pruning the plants after fruit set ‐ Crop Forcing (CF) ‐ removing all the leaves and bunches and leaving five buds per shoot, in order to reduce the negative effect of high temperatures during berry maturation on its quality.

Material and methods ‐ This work aims to study the effect of forcing vine regrowth in cv. ‘Touriga Nacional’ under Regulated Deficit Irrigation conditions, in vines irrigated with 30% of the evapotranspiration. Three modalities were established: vines with no forcing regrowth (Control ‐ CTRL), vines with CF set 15 days after fruit set (CF15) and plants with CF performed 30 days after fruit set (CF30). The effects on phenology, canopy development, berry development and fruit composition were assessed.

Results ‐ Plants subjected to CF15 were severely damaged after phenological stage of full bloom due to exceptional conditions to downy mildew (Plasmopara viticola) infections, boosted by the new phenological stages due to crop forcing. On the other hand, the crop forcing modality CF30 registered a delay of nearly two months in all phenological stages, since fruit set until harvest. Shorter internodes (50%) and lower leaf area (35%) were observed in CF30 when compared to the CTRL plants at ripening stage. The number of shoots at fruit set was also significantly different between the three treatments, with higher values in CF modalities and lower values in CTRL plants. In terms of yield, comparing CF30 th th (harvested in November, 27 ) and CRTL (harvest in October, 6 ), it was found that CF reduced the number of bunches (39%), the number of berries per bunch and the average berry weight (60%). Moreover, berries from the forced crop modalities (from grapes) had a pH slightly lower (3.35), higher titratable acidity (8.82 g/L) and lower ˚Brix (17.02˚Brix) when compared to CRTL, with pH values of 3.74, titratable acidity of 4.16 g/L and Brix of 23.93˚. Despite these results, further study should be carried out to evaluate the long‐term effects of CF and its applicability depending on the climatic conditions for each year.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Inês L. CABRAL (1), Anabela CARNEIRO (1), Joana VALENTE (2), Fernando ALVES (2), Frank S. ROGERSON (2), Artur MOREIRA (2), Pedro LEAL da COSTA (2), Susana M.P. CARVALHO (1), Jorge QUEIROZ (1)

(1) GreenUPorto & DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária, 747, 4485-646 Vairão, Portugal
(2) Symington Family Estates, Travessa Barão de Forrester 86, 4431-901 Vila Nova de Gaia, Portugal 

Contact the author

Keywords

Douro region, crop forcing, grapevine, phenology, quality, yield

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Evaluation of a biological foliar fertilization system, in the production, agronomic and quality characteristics of three wine grape varieties

Evaluation of the fertility management practices in wine grape varieties production. Wine grape represents one of the most important productions in Greece with major impact to the socioeconomic characteristics of the country. The objective of this study is to evaluate, with the support of Geospatial Technologies, the potential effects of an innovative foliar fertilizer system, which is composed of three parts: a mineral fertilizer in a micronized formulation, a biostimulant as an enhancing factor of the process and, an amino acid compound (SANOVITA concept). The study was established at a collaborative, private vineyard, in the area of Trilofos-Thessaloniki, at the region of Northern Greece.

The chain of effects between sunburn necroses and rot infestation in the context of climate change

Climate change will increasingly challenge future viticulture due to long-enduring and extreme weather conditions, jeopardizing yield and wine quality in various ways.

Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Climate change poses several challenges for the wine-industry in the 21st century. Adaptation of viticultural and winemaking practices are therefore essential to preserve wine quality and typicity. Given the complex interactions between physical, biological and human factors at terroir scales, studies conducted at these fine scales allow to better define the local environment and its influences on grapevine growth and berry ripening.

Energy optimization of the Charmat-Martinotti refermentation process

The european union has estimated that energy consumption for wine production is about 1,750 million kwh per year, of which 500 million kwh is attributable to italy. In recent years, Italy has emerged as the world’s leading wine producer with about 50 million hectoliters per year. About 20 percent (9.8 million hectoliters) of Italian wine is marketed after refermentation according to the Charmat-Martinotti method.

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.