GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Forcing vine regrowth in Vitis vinifera cv. Touriga nacional at Douro region

Forcing vine regrowth in Vitis vinifera cv. Touriga nacional at Douro region

Abstract

Context and purpose of the study ‐ Douro Region, characterized by a Mediterranean climate type and schist soils, is subjected to water and heat stresses conditions during summer. In some locations, the temperatures registered during berry maturation, lead to fruit ripen during warmer months, increasing the degradation of organic acids, tannins and phenolics that can negatively affect the quality of wines. Forcing vine regrowth is a new practice, being currently tested in Mediterranean countries, that aims to shift fruit ripening to cooler months of the year by pruning the plants after fruit set ‐ Crop Forcing (CF) ‐ removing all the leaves and bunches and leaving five buds per shoot, in order to reduce the negative effect of high temperatures during berry maturation on its quality.

Material and methods ‐ This work aims to study the effect of forcing vine regrowth in cv. ‘Touriga Nacional’ under Regulated Deficit Irrigation conditions, in vines irrigated with 30% of the evapotranspiration. Three modalities were established: vines with no forcing regrowth (Control ‐ CTRL), vines with CF set 15 days after fruit set (CF15) and plants with CF performed 30 days after fruit set (CF30). The effects on phenology, canopy development, berry development and fruit composition were assessed.

Results ‐ Plants subjected to CF15 were severely damaged after phenological stage of full bloom due to exceptional conditions to downy mildew (Plasmopara viticola) infections, boosted by the new phenological stages due to crop forcing. On the other hand, the crop forcing modality CF30 registered a delay of nearly two months in all phenological stages, since fruit set until harvest. Shorter internodes (50%) and lower leaf area (35%) were observed in CF30 when compared to the CTRL plants at ripening stage. The number of shoots at fruit set was also significantly different between the three treatments, with higher values in CF modalities and lower values in CTRL plants. In terms of yield, comparing CF30 th th (harvested in November, 27 ) and CRTL (harvest in October, 6 ), it was found that CF reduced the number of bunches (39%), the number of berries per bunch and the average berry weight (60%). Moreover, berries from the forced crop modalities (from grapes) had a pH slightly lower (3.35), higher titratable acidity (8.82 g/L) and lower ˚Brix (17.02˚Brix) when compared to CRTL, with pH values of 3.74, titratable acidity of 4.16 g/L and Brix of 23.93˚. Despite these results, further study should be carried out to evaluate the long‐term effects of CF and its applicability depending on the climatic conditions for each year.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Inês L. CABRAL (1), Anabela CARNEIRO (1), Joana VALENTE (2), Fernando ALVES (2), Frank S. ROGERSON (2), Artur MOREIRA (2), Pedro LEAL da COSTA (2), Susana M.P. CARVALHO (1), Jorge QUEIROZ (1)

(1) GreenUPorto & DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária, 747, 4485-646 Vairão, Portugal
(2) Symington Family Estates, Travessa Barão de Forrester 86, 4431-901 Vila Nova de Gaia, Portugal 

Contact the author

Keywords

Douro region, crop forcing, grapevine, phenology, quality, yield

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Copper, iron and zinc in surface layer of Primošten vineyard soils

Long-term use of copper fungicides causes increased accumulation of total copper in the surface layer of vineyard soils. Many of authors has researched the anthropogenic influx of copper in such soils, which can result in environmental risks.

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].

Macrowine 2021: available on IVES Conference Series

We were a partner of the 2021 Macrowine international congress. This event was held virtually last June. On IVES Conference Series portal, more than 280 abstracts written by wine scientists are available. They are available in Open Access and are divided into 6...

Impact of high temperatures on phenolic profile of Babić grapes

Babić is a Croatian native grapevine variety grown in the Coastal region, mainly in the Šibenik and Primošten areas, famous for high quality red wines. The region is known for its warm Mediterranean climate and karst relief. Vineyards are found on the hillsides of varying slopes and exposition usually giving low yields of exceptional quality.

The use of viticultural and oenological performance of grapevines to identify terroirs: the example of Sauvignon blanc in Stellenbosch

Identification and characterisation of terroirs depends on knowledge of environmental parameters, functioning of the grapevine and characteristics of the final product. A network of plots of Sauvignon blanc was delimited in commercial vineyards in proximity to weather stations at 20 localities and their viticultural and oenological response was monitored for a period of seven years. These experimental plots were further characterised with respect to climate, soil and topography.