GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Forcing vine regrowth in Vitis vinifera cv. Touriga nacional at Douro region

Forcing vine regrowth in Vitis vinifera cv. Touriga nacional at Douro region

Abstract

Context and purpose of the study ‐ Douro Region, characterized by a Mediterranean climate type and schist soils, is subjected to water and heat stresses conditions during summer. In some locations, the temperatures registered during berry maturation, lead to fruit ripen during warmer months, increasing the degradation of organic acids, tannins and phenolics that can negatively affect the quality of wines. Forcing vine regrowth is a new practice, being currently tested in Mediterranean countries, that aims to shift fruit ripening to cooler months of the year by pruning the plants after fruit set ‐ Crop Forcing (CF) ‐ removing all the leaves and bunches and leaving five buds per shoot, in order to reduce the negative effect of high temperatures during berry maturation on its quality.

Material and methods ‐ This work aims to study the effect of forcing vine regrowth in cv. ‘Touriga Nacional’ under Regulated Deficit Irrigation conditions, in vines irrigated with 30% of the evapotranspiration. Three modalities were established: vines with no forcing regrowth (Control ‐ CTRL), vines with CF set 15 days after fruit set (CF15) and plants with CF performed 30 days after fruit set (CF30). The effects on phenology, canopy development, berry development and fruit composition were assessed.

Results ‐ Plants subjected to CF15 were severely damaged after phenological stage of full bloom due to exceptional conditions to downy mildew (Plasmopara viticola) infections, boosted by the new phenological stages due to crop forcing. On the other hand, the crop forcing modality CF30 registered a delay of nearly two months in all phenological stages, since fruit set until harvest. Shorter internodes (50%) and lower leaf area (35%) were observed in CF30 when compared to the CTRL plants at ripening stage. The number of shoots at fruit set was also significantly different between the three treatments, with higher values in CF modalities and lower values in CTRL plants. In terms of yield, comparing CF30 th th (harvested in November, 27 ) and CRTL (harvest in October, 6 ), it was found that CF reduced the number of bunches (39%), the number of berries per bunch and the average berry weight (60%). Moreover, berries from the forced crop modalities (from grapes) had a pH slightly lower (3.35), higher titratable acidity (8.82 g/L) and lower ˚Brix (17.02˚Brix) when compared to CRTL, with pH values of 3.74, titratable acidity of 4.16 g/L and Brix of 23.93˚. Despite these results, further study should be carried out to evaluate the long‐term effects of CF and its applicability depending on the climatic conditions for each year.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Inês L. CABRAL (1), Anabela CARNEIRO (1), Joana VALENTE (2), Fernando ALVES (2), Frank S. ROGERSON (2), Artur MOREIRA (2), Pedro LEAL da COSTA (2), Susana M.P. CARVALHO (1), Jorge QUEIROZ (1)

(1) GreenUPorto & DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária, 747, 4485-646 Vairão, Portugal
(2) Symington Family Estates, Travessa Barão de Forrester 86, 4431-901 Vila Nova de Gaia, Portugal 

Contact the author

Keywords

Douro region, crop forcing, grapevine, phenology, quality, yield

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Juvenile-to-adult vegetative phase transition in grapevine 

The sequential activity of miR156 and miR172 controls the juvenile to adult phase transition in many plant species, where miR156 abundance decreases while miR172 increases along plant development. Very little is known about phase transition in horticultural woody species, which show substantially long vegetative phases. In grapevine, phase transition seems to be dissociated, displaying a first transition from juvenile to adult vegetative state in the first year, coincident with tendril differentiation and a subsequent induction of inflorescences in place of some of tendrils in later years under flowering inductive environmental conditions. Since grapevine is a highly heterozygous species, the generation of genetically homogeneous material for replicated transcriptomic analyses from seed-derived plants was a main challenge.

Influence of Partial Rootzone Drying on grape and wine anthocyanin composition

The effect of Partial Rootzone Drying (PRD) on fruit and wine composition has been investigated. At harvest, total anthocyanin and phenolic concentration of Shiraz and Cabernet Sauvignon fruit was either unaltered or increased by PRD relative to control irrigation over two seasons. Where there was an increase in anthocyanin concentration

Grape seed powder as an alternative to bentonite for wine fining

PR proteins can cause haze in wines, and the risk is to keep the wine unsold. Generally, in winemaking bentonite solves this problem by removing proteins, but it is not a renewable resource, has poor settling, which means difficulty in filtering after use and a considerable loss of wine, it is not a specific adsorbent and may reduce aromas and flavor compounds

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines.

Sensory and chemical effects of postharvest grape cooling on wine quality

Wine cellars are affected by seasonally fluctuating workloads and face challenges especially in the harvest period connected to the required timely processing of the harvested grapes.