GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Forcing vine regrowth in Vitis vinifera cv. Touriga nacional at Douro region

Forcing vine regrowth in Vitis vinifera cv. Touriga nacional at Douro region

Abstract

Context and purpose of the study ‐ Douro Region, characterized by a Mediterranean climate type and schist soils, is subjected to water and heat stresses conditions during summer. In some locations, the temperatures registered during berry maturation, lead to fruit ripen during warmer months, increasing the degradation of organic acids, tannins and phenolics that can negatively affect the quality of wines. Forcing vine regrowth is a new practice, being currently tested in Mediterranean countries, that aims to shift fruit ripening to cooler months of the year by pruning the plants after fruit set ‐ Crop Forcing (CF) ‐ removing all the leaves and bunches and leaving five buds per shoot, in order to reduce the negative effect of high temperatures during berry maturation on its quality.

Material and methods ‐ This work aims to study the effect of forcing vine regrowth in cv. ‘Touriga Nacional’ under Regulated Deficit Irrigation conditions, in vines irrigated with 30% of the evapotranspiration. Three modalities were established: vines with no forcing regrowth (Control ‐ CTRL), vines with CF set 15 days after fruit set (CF15) and plants with CF performed 30 days after fruit set (CF30). The effects on phenology, canopy development, berry development and fruit composition were assessed.

Results ‐ Plants subjected to CF15 were severely damaged after phenological stage of full bloom due to exceptional conditions to downy mildew (Plasmopara viticola) infections, boosted by the new phenological stages due to crop forcing. On the other hand, the crop forcing modality CF30 registered a delay of nearly two months in all phenological stages, since fruit set until harvest. Shorter internodes (50%) and lower leaf area (35%) were observed in CF30 when compared to the CTRL plants at ripening stage. The number of shoots at fruit set was also significantly different between the three treatments, with higher values in CF modalities and lower values in CTRL plants. In terms of yield, comparing CF30 th th (harvested in November, 27 ) and CRTL (harvest in October, 6 ), it was found that CF reduced the number of bunches (39%), the number of berries per bunch and the average berry weight (60%). Moreover, berries from the forced crop modalities (from grapes) had a pH slightly lower (3.35), higher titratable acidity (8.82 g/L) and lower ˚Brix (17.02˚Brix) when compared to CRTL, with pH values of 3.74, titratable acidity of 4.16 g/L and Brix of 23.93˚. Despite these results, further study should be carried out to evaluate the long‐term effects of CF and its applicability depending on the climatic conditions for each year.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Inês L. CABRAL (1), Anabela CARNEIRO (1), Joana VALENTE (2), Fernando ALVES (2), Frank S. ROGERSON (2), Artur MOREIRA (2), Pedro LEAL da COSTA (2), Susana M.P. CARVALHO (1), Jorge QUEIROZ (1)

(1) GreenUPorto & DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária, 747, 4485-646 Vairão, Portugal
(2) Symington Family Estates, Travessa Barão de Forrester 86, 4431-901 Vila Nova de Gaia, Portugal 

Contact the author

Keywords

Douro region, crop forcing, grapevine, phenology, quality, yield

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The evolution of the aromatic composition of carbonic maceration wines

The vinification by Carbonic maceration (CM) involves the process whereby the whole bunches are subjected to anaerobic conditions during several days. In this anaerobic condition, the grape endogenous enzymes begin an intracellular fermentation. This situation favors that whole grapes split open and release their juice into the tank, increasing the liquid phase that is fermented by yeasts [1]. Then, two types of wines are obtained; one from the free-run liquid in the tank (FCM) and other from the liquid after pressing the whole grape bunches (PCM). PCM wines are recognized as high quality young wines because their fruity and floral aromas[2] that although they are very intense at the end of the winemaking they gradually disappear during conservation.

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.

The influence of RNAi-expressing rootstocks in controlling grey mold on grapevine cultivars

Worldwide, with an average of 6.7 million cultivated hectares, of which exclusively 51% in Europe (faostat, 2021), the production of table and wine grapes is a leading sector, with continued growth in Europe in the area devoted to vine cultivation. during the growing season, most of the plant organs can be susceptible to several fungal and oomycete diseases, leading to important economic losses and causing detrimental effects on fruit quality. the increasingly scarce availability of fungicidal products, often also related to their relative impact on the environment, coupled with the emergence of resistance in the pathogen to these products, make defence increasingly challenging.

Towards a European data basis based of advanced multi-isotopic signatures and artificial intelligence: the wine in blue project

Major and trace elements are essential for the development of grapes used for the wine. They are primarily originating from the soil. Some elements are also seldomly added during the wine making process. Therefore, the largest spectrum of major, trace and ultra-trace elements in the final wine product is a good signature of its geographical origin. In the frame of the European tracewindu, we have developed a very original multi-isotopic dilution method using triple quadrupole icp/ms.