Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Foliar application of specific inactivated yeast to enhance the varietal aroma precursors accumulation on cv. Traminer

Foliar application of specific inactivated yeast to enhance the varietal aroma precursors accumulation on cv. Traminer

Abstract

AIM: The production of grapes with a balanced composition is one of the main goals that agronomists and oenologists pursue to produce premium quality wines. The gap between technological (sugar/acid ratio) and aromatic maturity is expanding due to the increasing temperature and lack of rainfall during the ripening phase. In three consecutive years 2017, 2018 and 2019 we have evaluated the elicitor effect of the foliar application of a specific inactivated yeasts (LalVigne Aroma, Lallemand Inc) on the vine’s secondary metabolism with a specific effect on the aroma precursors accumulation.

METHODS: The experiment took place in Trentino Alto Adige (Italy) in a commercial vineyard of Vitis vinifera L. cv. Traminer. The application of the specific inactivated yeasts was performed according to the producers guidelines, two foliar treatments at 3 kg/ha each, the first at the beginning of veraison and the second ten days later. At harvest specific measurements were taken to assess the effect on grape quality and on organoleptic characteristic of the subsequent wines: yield, biochemical parameter, the free and glycosylated aromatic precursors in grapes with GC/MS.

RESULTS: In the three studied vintages there was not effect of the treatment on yield and biochemical parameter (sugar, pH, titratable acidity), while there was a significant impact on the aroma precursors. In both forms (free and glycosylated) the total amount of aroma precursors was higher in the treated grapes, in particular nerol, β-citronellol, geraniol, geranic acid and benzyl alcohol showed a significant increase. Thiols precursors of 3MH were significantly higher in treated plants. Organoleptic evaluation of the wines confirmed chemicals result.

CONCLUSIONS:

The results confirmed that the foliar application of the specific inactivated yeast tested in our trials positively impacted on grape and wine aroma profile without affecting the sugar accumulation and acidity degradation. This application is an efficient agronomic tool able to modify the secondary metabolism of the vines related to aroma precursors, increasing the varietal expression, without affecting sugars, acids and pH.

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Duilio Porro , San Michele , Fabrizio, BATTISTA. 

Fondazione Edmund Mach Via Mach 1 38098 San Michele all’Adige (TN) – Italy, Fabrizio, BATTISTA. Lallemand Inc, Via Rossini 14/B, 37060 Castel D’Azzano (VR) Italy

Contact the author

Keywords

elicitor, inactivated yeast, thiols, traminer, aroma precursors, terpenes, climate change

Citation

Related articles…

Starmerella bacillaris grape treatment as a sustainable approach to manage Botrytis cinerea during the withering process

Growing concerns over the environmental and health risks posed by chemical pesticides have highlighted the need to reduce their use in the agri-food sector.

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

A stratified sampling approach to investigate the impact of climate and maturity on the aroma and phenolic composition of grenache grapes and wines within the poctefa area

Context and purpose of the study. Climate change is affecting wine production and induces a large variability in wine composition between vintages.

Is wine terroir a valid concept under a changing climate?

The OIV[i] defines terroir as a concept referring to an area in which collective knowledge of the interactions between the physical and biological environment (soil, topography, climate, landscape characteristics and biodiversity features) and vitivinicultural practices develops, providing distinctive wine characteristics. Those are perceptible in the taste of wine, which drives consumer preference and, therefore, wine’s value in the marketplace. Geographical indications (GI) are recognized regulatory constructs formalizing and protecting the nexus between wine taste and the terroir generating it. Despite considering updates, GIs do not consider the nexus as a dynamic one and do not anticipate change, namely of climate. Being climate a fundamental feature of terroir, it strongly impacts wine characteristics, such as taste. According to IPCC[ii], many widespread, rapid and unprecedented changes of climate occurred, some being irreversible over hundreds to thousands of years. Climatic shifts and atmospheric-driven extreme events have been widely reported worldwide. Recent climatic trends are projected to strengthen in upcoming decades, whereas extremes are expected to increase in frequency and intensity, forcing wines away from GI definitions. Geographical shifts of viticultural suitability are projected, often moving into regions and countries different from current ones. Some authors propose adaptation in viticulture, winemaking and product innovation. We show evidence of climate changing wine characteristics in the Douro valley, home of 270-year-old Port GI. We discuss herein resist or adapt stances for when climate changes the nexus between terroir and wine characteristics. Using the MED-GOLD[iii] dashboard, a tool allowing for easy visual navigation of past and future climates, we demonstrate how policymakers can identify future moments, throughout the 21st century under different emission scenarios, when GI specifications will likely need updates (e.g., boundaries, varieties) to reduce climate-change impacts.

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.