Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Insights into the stable isotope ratio variability of hybrid grape varieties

Insights into the stable isotope ratio variability of hybrid grape varieties

Abstract

The wine industry faces the consumer’s increasing demand for a sustainable and environmentally-friendly production [1]. This demand has been shared and boosted by the European Union within the European Green Deal in the Farm to Fork strategy that aims to reduce a 50% the pesticide utilisation in farming systems. Among the agronomical approaches so far proposed, the use of mould resitant hybrid varieties -based on crossings of Vitis vinifera with other Vitis spp [2]- with a high tolerance to the attack of vine patogens is gaining the vinegrowers attention and the production area is continuously increasing. The analysis of stable isotope ratio is the reference method to fight against counterfeiting in the wine industry, also thanks to the establishment of annual official reference databases in which the isotopic ranges of variability are reported [3]. This study aims to characterise and determine whether there is a varietal variation in the stable isotopic ratio of European Vitis vinifera to modern hybrid varieties. Wine samples produced with seven white varieties (Aromera, Bronner, Helios, Johanniter, Muscaris, Solaris, Souvignier Gris) and seven red varieties (Baron, Cabernet Cortis, Cabernet Cantor, Cabernet Carbon, Monarch, Prior, Regent) grown in two experimental plots sited in the north Italian region of Trentino were analysed for the stable isotopic ratio. Results were compared to the ratio isotopic ratio of the wines obtained from Vitis vinifera varieties of the same production area. The analyses were carried out by isotopic ratio mass spectrometry (IRMS) and site-specific natural isotopic fractionation by nuclear magnetic resonance (SNIF-NMR), according to the official methods of the International Organisation of Vine and Wine (OIV). The comparison shows the tendency of some hybrid varieties to deviate from the regional averages in their stable isotope ratios. In particular, Monarch, Cabernet Carbon and Cabernet Cantor among the red varieties and Solaris, Helios and Souvignier Gris among whites, stood out with values that differed considerably from the regional stable isotope standard values of wines derived from V. vinifera. The study investigates for the first time hybrid varieties from an isotopic point of view.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Matteo Perini, Simon Lanzb, Sergio Mosera, Tomas Romana, San Michele all’Adige, Federica Camina

Fondazione Edmund Mach (FEM), via E. Mach 1, 38010, Italy b University of Trento

Contact the author

Keywords

stable isotope; snif-nmr; irms; hybrid; grape

Citation

Related articles…

Hemisynthesis, NMR Characterization and UHPLC-Q-Orbitrap /MS² identification of (+)-Catechin oxidation products in red wines and grape seed extracts

(+)-Catechin—laccase oxidation dimeric standards were hemi-synthesized using laccase from Trametes versicolor in a water-ethanol solution at pH 3.6.

Phenological characterization of a wide range of Vitis Vinifera varieties

In order to study the impact of climate change on Bordeaux grape varieties and to assess the adaptation capacities of candidates to the grape varieties of this wine region to the new climatic conditions, an experimental block design composed of 52 grape varieties was set up in 2009 at the INRAE Bordeaux Aquitaine center. Among the many parameters studied, the three main phenological stages of the vine (budburst, flowering and veraison) have been closely monitored since 2012. Observations for each year, stage and variety were carried out on four independent replicates. Precocity indices have been calculated from the data obtained over the 2012-2021 period (Barbeau et al. 1998). This work allowed to group the phenological behaviour of the grapevine varieties, not only based on the timing of the subsequent developmental stages, but also on the overall precocity of the cycle and the total length of the cycle between budburst and veraison. Results regarding the variability observed among the different grape varieties for these phenological stages are presented as heat maps.

Key odorants responsible for the sensory spaces defining the different aroma potentials of Grenache and Tempranillo grapes

There are yet many gaps in our knowledge about the aroma potential of winemaking grapes and its measurement. Trying to bring some light into this question, a new general strategy based on the accelerated hydrolysis of reconstituted phenolic and aromatic fractions (PAFs) extracted from grapes has been developed

Soil or geology? And what’s the difference? Some observations from the New World

Observational historical geology seeks to establish the evolutionary history of the surface of Earth. This approach is applicable not only to bedrock, but to the soft material that lies at the surface, the stuff called soil by most people. The geologic perspective provides a view of this material that is quite different from that of soil science, at least as practiced by many in America.

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).