WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Abstract

Wine longevity is a complex multifactor phenomenon in which the weight of the different factors is not well known. One of the key factors of wine longevity is related to its resistance to oxidation. This property can be defined as the ability of the wine, under an exposure to oxygen, to keep its color, avoid accumulation of acetaldehyde and Strecker aldehydes (SA), and keep as long as possible labile varietal aroma compounds, such as polyfunctional mercaptans (PFM). The goal of the present work is to assess the specific role played by grape polyphenols on these abilities. For that, polyphenolic fractions extracted from Garnacha, Tempranillo, and Moristel grapes were reconstituted to form model wines of identical pH, ethanol, amino acid, metal, and varietal PFMs contents. Models were subjected to a forced oxidation procedure at 35 °C (50 mg O2L−1 for 35 days) and to an equivalent treatment under strict anoxia. Chemical characterization of polyphenolic fractions and oxidized and unoxidized (controls) wine models was carried out. In general, oxidation causes increases in redox potential, tannin activity, and in the levels of SAs. Similarly, oxidation causes decreases of great magnitude in free and total PFMs and of moderate magnitude in total polyphenol index, pigmented tannins, and in TDN. Polyphenolic profiles significantly determined oxygen consumption rates (5.6−13.6 mg L−1 day−1), SAs accumulation (ratios max/min around 2.5), and levels of PFMs remaining (ratio max/min between 1.93 and 4.53). By contrast, acetaldehyde accumulated in small amounts and homogeneously (11−15 mg L−1). The accumulation of SAs is positively and significantly correlated to the content on phenolic acids, monomeric flavanols, and nonpigmented tannins and negatively correlated to the contents in prodelphinidins, anthocyanins, and color. Overall, SAs accumulation may be related to polyphenols, producing stable quinones. Tempranillo samples, with highest delphinidin and prodelphinidins and smallest catechin, consume O2 faster but accumulate less SA and retain smallest amounts of PFMs under anoxic conditions. The ability to protect PFMs as disulfides may be negatively related to the increase in tannin activity, while pigmented tannins could be related to 4-methyl-4-mercaptopentanone decrease. The varietal polyphenolic profile exerted a deep effect on the generation of Strecker aldehydes and on the instability of polyfunctional mercaptans, and hence, on the longevity of wine aroma.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Elena, Bueno-Aventín, Vicente, Ferreira, Ana, Escudero, Fernández-Zurbano

Presenting author

Elena, Bueno-Aventín – Laboratorio de Análisis del Aroma y Enología (LAAE), Universidad de Zaragoza

Laboratorio de Análisis del Aroma y Enología (LAAE), Universidad de Zaragoza | Laboratorio de Análisis del Aroma y Enología (LAAE), Universidad de Zaragoza, Purificación | Instituto de Ciencias de la Vid y del Vino (ICVV), Universidad de La Rioja

Contact the author

Keywords

Aromas-Quinones-Aging-Strecker Aldehydes-Polyfunctional Mercaptan

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels
(unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition.

Viticultural zoning of the country of Mendoza, Argentina. Study of the first zone : department of Luján de Cuyo. Statement of the study year 2002

La région viticole de Mendoza est la principale zone vitivinicole d’Argentine qui se compose de 3 oasis (Nord, Valle de Uco, Sud). La première zone vitivinicole, située dans l’oasis Nord, est composée par les département de Luján de Cuyo et Maipu. C’est la zone de production la plus ancienne et la plus reconnue pour la qualité de sa production. Ce travail se porte plus particulièrement sur le département de Luján de Cuyo qui constitue le lieu traditionnel de production du Malbec argertin. Ce travail propose de caractériser les terroirs et de mettre en avant leurs typicités.

Influence du porte-greffe sur le statut minéral du greffon

Dans le cadre de TerclimPro 2025, Elisa Marguerit a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8387

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.