IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 ´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

Abstract

High-volume mass-market white wines production method by means of harvest-deferred fermentation from desulphited musts allows an efficient business management by avoiding the seasonality in wine sector. This technology has been used in the production of light and fresh wines from Vinhos Verdes Appellation (VVA – Portugal). This Appellation presents a diversity of varieties and wine styles, and is known for producing light and fresh wines, but also mineral, complex and structured ones, with, in general, low ethanol content. The light and fresh VV wines are characterized by herbaceous, citrus, tropical fruits, orchard fruits and floral notes. Thus, the goal of this work was to unveil based on physical-chemical data if sulphitated musts from VVA preserve the organoleptic potential that allows the production of high-volume wines with the typical light and fresh VV character. A set of musts were produced at industrial scale from grapes harvested from different sub-regions of VVA, which were then sulphited and stored for 1 year. For comparison purpose, sulphitated musts from Beira Atlântico and Trás-os-Montes Portuguese regions were also characterized. Free volatile and glycosidically-linked compounds were determined by advanced gas chromatography (GC×GC-ToFMS). The physical-chemical parameters currently used in musts quality control were also determined. Statistical tools were applied by combining all data domains. The aroma potential of musts was performed based on the construction of aroma networks [1].A total of 145 volatile compounds were putative identified, which varied from 136 to 142, in must from Cávado and Lima sub-regions, respectively. Regarding the glycosidically-linked fraction, 29 compounds were putatively identified, which varied from 20 to 24 in must from Cávado and Amarante sub-regions. Clustering analysis unveiled the formation of 3 main clusters, one of which includes all VVA musts, which allows to infer that geographical region is the main distinguishing factor. VVA musts were characterized with higher total acidity, and lower °Brix, potency alcoholic strength and density, compared with the samples from other regions. Moreover, esters, monoterpenic and sesquiterpenic compounds detected in VVA musts may contribute with citrus, floral, orchard and tropical fruits aromas, which are relevant aromas for sensory characteristics of VV wines. Thus, must sulphitation, a methodology used to extend its preservation beyond the harvest season, seems to keep the particular musts character, which is extremely important for the consistency of light and fresh high-volume VV wines.

Acknowledgments:

This work was funded under the project PRECIDIF – Precision Management of new Vinho Verde wines production from differential fermentation, project nº 24214. FCT/MEC for financial support LAQV-REQUIMTE (UIDB/50006/2020) through national funds and co-financed by the FEDER and PT2020.

References

[1] Y-Y Ahn, SE Ahnert, JP Bagrow, A-L Barabási, Flavor network and the principles of food pairing, Scientific reports (2011) 1, 196.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Rocha Silvia1, Martins Cátia1, Fontes Natacha2, Cunha e Silva Sara2 and Graça António2

1LAQV-REQUIMTE & Department of Chemistry, University of Aveiro
2Sogrape Vinhos, S.A.

Contact the author

Keywords

white must sulphitation; free volatile compounds; glycosidically-linked compounds; physical-chemical parameters; aroma potential

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Comparison between satellite and ground data with UAV-based information to analyse vineyard spatio-temporal variability

Currently, the greatest challenge for vine growers is to improve the yield and quality of grapes by minimizing costs and environmental impacts. This goal can be achieved through a better knowledge of vineyard spatial variability. Traditional platforms such as airborne, satellite and unmanned aerial vehicles (UAVs) solutions are useful investigation tools for vineyard site specific management.

A zoning study of the viticultural territory of a cooperative winery in Valpolicella

The Valpolicella hilly area, north of Verona, is highly vocated for viticulture but its vineyards are sometimes characterized by very different soil and microclimate conditions which can greatly affect their oenological potential.

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 ´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

Abstract

Content of the article

References

Section for all references

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: typeofthepublication

Authors

author1, author2, author3

Presenting author

Description

List of affiliations ¹ ² ³

Contact the author

Email address (with mailto: link)

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days.

Vine nitrogen status and the terroir effect: a study on cv. Doral in the Vaud vineyard (Switzerland)

A 3-year study was conducted in the Vaud vineyard (Switzerland) to evaluate the effects of « terroir » on the ecophysiology and fruit compostion of Vitis vinifera L. cv.

Research summary on the use of Terroir as a wine purchasing cue

Due to the current challenging nature of the global wine market, and recent growth in number and strength of competitors from non-traditional wine producing countries, European wine producers are focussing on the potential to develop a competitive advantage through the concept of terroir.

Narrow terraces and alternative training systems for steep sloop viticulture – Douro region

In Douro Region, vineyards are usually planted on hillsides with steep sloops. The models currently used for planting those vineyards are, depending on the initial slope of the hillside, vertical planting or terraces.

Effects of soil water content and environmental conditions on vine water status and gas exchange of Vitis vinifera L. cv. chardonnay

Vine water status has a significant influence on vineyard yield and berry composition (Williams and Matthews, 1990; Williams et al., 1994). It has been hypothesized that the response of plants to soil water deficits may be due to some sort of “root signal” (Davies and Zhang, 1991). This signal probably arises due to the roots sensing a reduction in soil water content or an increase in the mecanical impedance as the soil dries out.

IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 ´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

Abstract

Content of the article

References

Section for all references

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: typeofthepublication

Authors

author1, author2, author3

Presenting author

Description

List of affiliations ¹ ² ³

Contact the author

Email address (with mailto: link)

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Understanding the complexity of grapevine winter physiology in the face of changing climate

The vast majority of our understanding of grapevine physiology is focused on the processes that occur during the growing season. Though not obvious, winter physiological changes are dynamic and complex, and have great influence on the survival and phenology of grapevines. In cool and cold climates, winter temperatures are a constant threat to vine survival. Additionally, as climate changes, grapevine production is moving toward more traditionally cool and cold climates, either latitudinal or altitudinal in location. Our research focuses on understanding how grapevines navigate winter physiological changes and how temperature impacts aspects of cold hardiness and dormancy. Through these studies, we have gained keen insight into the connections between winter temperature, maximum cold haridness, and budbreak phenology, that can be used to develop prediction models for viticulture in a changing climate.

Merging two genomes: a holistic approach to disentangle rootstock-mediated drought and recovery responses

Viticulture is facing many challenges due to climate change effects with increasingly attention to save resources, such as water, considering that drought events have been predicted to dramatically increase over the next future. Thanks to the -omics techniques, research pushed forward knowledge to deepen facets of drought response in diverse grapevine-rootstock combinations. However, the regulatory mechanisms orchestrating adaptation strategies during drought and recovery in grafted grapevines need further exploration. Herein, we combined ecophysiological, biochemical and molecular approaches to unravel drought and recovery-induced changes in potted Nebbiolo (NE) plants grafted onto three different rootstocks (3309, Kober5BB, Gravesac), by analysing root and leaf tissues.